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Abstract

I reformulate Gershkov and Winter’s (2023) model of priority services as a mecha-

nism design problem under a feasibility condition. Thus, I provide the necessary and

sufficient conditions for their Propositions 1, 2, 7, and 8, while allowing for stochas-

tic priority levels. Under the weaker conditions, adding more priority levels can

increase both the provider’s revenue and consumer welfare if the cost distribution

has a decreasing failure rate but satisfies Myerson’s regularity. Full separation can be

implemented by an all-pay auction. I also show that the provider can guarantee at

least half the maximal revenue by offering one priority service in addition to a (free)

regular service, and the approximation can be arbitrarily close if the distribution is

sufficiently concave. The approach can also be applied to Moldovanu et al.’s (2007)

model of status contests.

Gershkov and Winter (2023, henceforth GW) study a model of priority service (PS)

and analyze its welfare implications on consumers. They show that introducing PS

can be detrimental to consumer welfare when the monopoly service provider extracts

more revenue than the efficiency gains. For multiple priority levels, they find that if

the distribution has an increasing failure rate (IFR), the provider’s revenue is strictly

increasing in the number of priority levels, while the customers’ welfare is higher if PS is

not offered than if multiple priority levels are offered.

In this comment, I reformulate their model (with a monopoly service provider) as a

mechanism design problem under a feasibility condition. Thus, I rewrite the revenue

and consumer welfare maximization problems as linear optimization problems under

*I thank Alex Gershkov, Bart Lipman, and Juan Ortner for their helpful comments.
†Department of Economics, Boston University. Email: pxiao@bu.edu.
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majorization constraints. Using the techniques in Kleiner et al. (2021, henceforth KMS),

I provide the necessary and sufficient conditions for GW’s Propositions 1, 2, 7, and 8,

while allowing for stochastic priority levels. In particular, consumer welfare is decreasing

(increasing) in the number of priority levels if the failure rate is increasing (decreasing),

while an increasing failure rate is sufficient but unnecessary for the provider’s revenue to

be increasing in the number of priority levels. Thus, the trade-off between the provider’s

revenue and consumer welfare maximization is less stark—if the distribution has a de-

creasing failure rate but satisfies Myerson’s regularity condition (e.g., Pareto distribution),

adding more priority levels can increase both. Full separation can be implemented by an

all-pay auction. Moreover, I also show that the provider can guarantee at least half the

maximal revenue by offering two priority levels—a priority service and a (free) regular

service. The approximation can be arbitrarily close if the distribution is sufficiently

concave.

In addition, I extend their Section IV which considers endogenous pricing of the

regular service (and hence exclusion) to multiple priority levels. Under some regularity

conditions, the revenue-maximizing (welfare-maximizing) mechanism excludes some

types and induces full separation (total pooling) of the rest.

This approach can also be applied to other allocation problems where allocating the

object to one agent has externalities on others, for example, the model of contests for

status by Moldovanu et al. (2007, henceforth MSS) (with a continuum of agents). Among

others, I obtain the necessary and sufficient condition for their Theorem 4.

1 Model

In their benchmark model, a monopoly service provider faces a continuum of customers

of mass 1 with heterogeneous unit costs of waiting (i.e., types), denoted by c, which has a

distribution F with bounded support [0, c̄] and density f(c) > 0. A customer with type

c who gets service at time t and pays p ≥ 0 has a utility of −p − tc. The provider can

serve a single customer at each instant. They normalize the service time of a mass m of

consumers to be exactly m units of time and the cost of the provider to be zero, which

implies t ∈ [0, 1] because the total mass of customers is 1.

They assume the regular service is free and do not consider exclusion in the bench-

mark model. Then, in Section IV, they allow for endogenous pricing of the regular service

(and thus exclusion) by introducing the value of the service to the consumer. I main-

tain this assumption first and consider endogenous pricing of the regular service and

exclusion in Section 4, as in GW’s Section IV.

2



2 A Mechanism Design Approach

It is without loss to consider a direct mechanism {p(c), t(c)}, consisting of a payment

p : [0, c̄] → R+ and a (potentially random) ex-post waiting time T : [0, c̄]×Ω → [0, 1], where

ω ∈ Ω captures the randomness, and t(c) = E[T (c, ω) | c]. Denote U(c) = −p(c) − t(c)c.

Lemma 1. A direct mechanism {p(c), t(c)} is incentive-compatible if and only if

• U(c) = U(0) −
∫ c

0 t(x) dx for all c ∈ [0, c̄], and

• t(c) is decreasing.

Alternative interpretation. The provider designs a queuing scheme ℓ : [0, c̄] → ∆L that

maps the consumer’s type c to a (possibly stochastic) priority level ℓ(c) along with a

payment p : [0, c̄] → R+; the higher the priority level, the less time he needs to wait.1

If there are k ≥ 1 priority levels, L = {1, . . . , k}. For full separation, L = [0, 1]. When

priority levels are deterministic, ℓ(c) ∈ L is degenerate. By the assumptions on the

service time, for a given level ℓ0 ∈ L, the expected waiting time conditional on ℓ0 is

τ(ℓ0) = Pr(ℓ(c) > ℓ0) + Pr(ℓ(c) = ℓ0)/2. For deterministic priority levels, incentive

compatibility requires that ℓ(c) must be (weakly) increasing, so the consumer’s expected

waiting time is t(c) = τ(ℓ(c)) = 1 − E[F (c̃) | ℓ(c̃) = ℓ(c)].2 For potentially stochastic

priority levels, the expected waiting time is t(c) = Eℓ̃∼ℓ(c)[τ(ℓ̃)] = 1 − Eℓ̃∼ℓ(c)[E[F (c̃)|ℓ̃]].3

A decreasing waiting time function t(c), albeit incentive-compatible, is not necessarily

feasible because it may be unable to be induced by an ex-post allocation (or queuing

scheme). Formally, say t(c) is feasible if there exists an ex-post allocation T (or a queuing

scheme ℓ) that induces t(c) as the interim waiting time. Now I characterize the necessary

and sufficient condition for a decreasing t(c) to be feasible.

It is convenient to denote the consumer’s priority value by s(c) = 1 − t(c), which

quantifies priority by the time he saved compared to being served last. In other words,

s(c) = Eℓ̃∼ℓ(c)[E[F (c̃)|ℓ̃]], where ℓ(c) is his (relative) priority level.

Theorem 1 (Feasibilty). A decreasing t(c) is feasible if and only if s(c) = 1 − t(c) is a

1This can be implemented by a pricing scheme as a function of the priority level.
2To see this, if ℓ(c) is strictly increasing at c, then t(c) = 1 − F (c). Otherwise, if ℓ(c) = ℓ1 is constant if

and only if c ∈ [c1, c2] (i.e., [c1, c2] are assigned to the same level ℓ1), then t(c) = 1 − (F (c1) + F (c2))/2 =
1 −E[F (c̃) | c̃ ∈ [c1, c2]] = 1 −E[F (c̃) | ℓ(c̃) = ℓ(c)] for c ∈ [c1, c2].

3For deterministic priority levels, it can be viewed as a monotone categorization problem (see Rayo
(2013) and Onuchic and Ray (2023)). See also Xiao (2024) for potentially stochastic levels.
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mean-preserving spread of F (c) in the quantile space, denoted by s ∈ MPS(F ), that is,∫ c̄

x

s(c) dF (c) ≤
∫ c̄

x

F (c) dF (c) for all x ∈ [0, c̄], (1)∫ c̄

0
s(c) dF (c) =

∫ c̄

0
F (c) dF (c) = 1/2. (2)

Proof sketch. À la Kleiner et al. (2021, Theorem 3).

Remark 1. The condition resembles the symmetric version of Border’s Theorem in

reduced-form auctions (see Maskin and Riley, 1984; Matthews, 1984; Border, 1991).

Remark 2. If the priority levels ℓ(c) are deterministic, s(c) = 1 − t(c) can only be an

extreme point of MPS(F ), i.e., either the majorization constraint or the monotonicity

constraint binds (see Theorem 1 in KMS). Since I allow for stochastic priority levels, t(c)
can take other forms.

Remark 3. An analog of the theorem also applies to the model of contests for status by

MSS with a continuum of agents, in which a type-θ agent assigned to the status level ℓ(θ)
has a status value of s(θ) = Eℓ̃∼ℓ(θ)[E[F (θ̃)|ℓ̃]−E[1−F (θ̃)|ℓ̃]], that is, the number of agents

behind him subtracted by the number of agents ahead of him.4 Thus, the feasibility

condition on the value of status becomes: an increasing s(θ) is feasible if and only if

s ∈ MPS(2F − 1) in the quantile space.5 Because E[s] = E[2F − 1] = 0, the total value is

normalized to 0.

The intuition is that the provider can induce full separation (i.e., t(c) = 1 − F (c)) by

offering infinitely many priority levels and serving every type in the descending order of

their costs. Any pooling of different types into the same priority level makes s ≡ 1 − t a

mean-preserving spread of F in the quantile space.

Example. Suppose there are two priority levels—regular service ({pL, tL}) and priority

service ({pH , tH}), where pL = 0 (no exclusion). Denote the cutoff type by c∗. Then, the

waiting time is tL = 1 − F (c∗)/2 for c < c∗ and tH = (1 − F (c∗))/2 for c ≥ c∗. It is easy to

4To see this, the expected status value conditional on the status level being ℓ0 is Pr(ℓ(θ) > ℓ0)−Pr(ℓ(θ) <
ℓ0), and incentive compatibility requires that ℓ(θ) is decreasing (because the marginal cost is 1/θ).

5MSS consider a finite number of n agents. In that case, under full separation (n status levels), agent i’s
status value s(θi) is

1
n

n∑
k=1

(
n

k

)
(1 − F (θi))n−kF (θi)k[k − (n− k − 1)] = 2F (θi) −

n + 1
n

→ 2F (θi) − 1 (3)

as n → ∞.
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check that E[t] = 1/2 and that
∫ c

0 t(c′) dF (c′) ≤
∫ c

0 (1 − F (c′)) dF (c′) for all c ∈ [0, c̄] (with

equality at c∗ and c̄).

3 Optimal Mechanism

Two extreme mechanisms are particularly of interest: full separation (t(c) = 1 − F (c))

and total pooling (t(c) = 1/2)6 ; the former can be induced by offering as many priority

service levels as possible, and the latter can be induced by offering no priority service

(regular service only). Note that I allow for stochastic priority levels.7

For this section, I maintain GW’s assumption in the benchmark model that the reg-

ular service {pL, tL} is free (pL = 0) so that there is no exclusion. Thus, the type-c

consumer’s reservation utility is U(c) = −tLc ≤ −tc, where tL is the expected waiting

time of the regular service, which is endogenously determined by the scheme t(c)—i.e.,

tL = maxc∈[0,c̄] t(c).

3.1 Revenue maximization

I first consider the optimal mechanism that maximizes the provider’s revenue. The

revenue maximization problem is given by

max
t(c),p(c)

∫ c̄

0
p(c) dF (c) (4)

subject to

p(c) ≥ 0 (5)

U(c) ≡ −p(c) − t(c)c ≥ −tLc (IR) (6)

− p(c) − t(c)c = U(0) −
∫ c

0
t(x) dx (IC) (7)

t(c) is decreasing (8)

s ≡ 1 − t ∈ MPS(F ) (MPS) (9)

Note that (IR) can be written as Ũ(c) ≡ U(c)+ tLc ≥ 0, which satisfies Ũ ′(c) = tL− t(c) ≥ 0,

so (IR) reduces to U(0) ≥ 0. Further, because p′(c) = −t′(c)c ≥ 0, the constraint p(c) ≥ 0
6Both are the extreme points of MPS(F ) (in the quantile space).
7GW also assume (except in Section V) that the provider can offer at most two priority levels—regular

service ({pL, tL}) and priority service ({pH , tH}) where pL = 0. While I allow for multiple priority levels in
the first place, the results also apply under the restriction to two priority levels.
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reduces to p(0) ≥ 0.

The revenue is given by

R =
∫ c̄

0
p(c) dF (c) =

∫ c̄

0

(
1 − F (c)
f(c) − c

)
t(c) dF (c) − U(0). (10)

Because U(0) = −p(0) ≥ 0 (IR), it is optimal to set U(0) = p(0) = 0 (even if p were

allowed to be negative). Denote J(c) = c− 1−F (c)
f(c) . The revenue maximization problem is

equivalent to

max
s∈MPS(F )

∫ c̄

0
J(c)s(c) dF (c) (11)

where s(c) = 1 − t(c) is increasing.

Note that I maintain the assumption that the regular service is free so that there is no

exclusion. Proposition 2 in KMS immediately implies the following results.

Proposition 1 (Cf. GW’s Proposition 8). Adding more priority levels (strictly) increases the

provider’s revenue if and only if J(c) = c− 1−F (c)
f(c) is (strictly) increasing.

Remark 4. GW’s Proposition 8 provides a sufficient condition for this result: F satisfies

the IFR property (i.e., 1−F (c)
f(c) is decreasing).

Corollary 1.1 (Cf. MSS’s Theorem 4). The revenue-maximizing mechanism induces full

separation if and only if J(c) = c− 1−F (c)
f(c) is increasing, which is payoff equivalent to an

all-pay auction.

Remark 5. Because MSS assume linear effort costs, effort maximization in their model is

the same as revenue maximization here. In Theorem 4, they provide a sufficient condition

for full separation: F satisfies the IFR property.

Full separation can be implemented by an all-pay auction, in which the more money

a consumer pays, the more ahead he is in the line (and the less time he needs to wait).

Proposition 2 (Cf. MSS’s Theorem 3). The revenue-maximizing mechanism always sepa-

rates the highest types c ∈ [c̄− ε, c̄] for some ε > 0.

Proof sketch. Because J ′(c̄) = 2 > 0, J(c) is increasing at a neighborhood of c̄, so by

Proposition 2 in KMS, the revenue-maximizing mechanism always separates types in

this neighborhood.

Remark 6. This “separation at the top” result is a continuous-type analog of MSS’s

Theorem 3, which assumes finite agents.
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Proposition 3 (Cf. MSS’s Proposition 1). If J(c) is single-dipped (i.e.,
∫ c

0 J(x) dx is concave-

convex), there exists some c0 ∈ [0, c̄) such that the revenue-maximizing mechanism sepa-

rates high types c ∈ [c0, c̄] and pools types c ∈ [0, c0].
If F (c) is sufficiently concave, J(c) is single-dipped, and the separating region [c0, c̄] can

be arbitrarily small.

Proof sketch. The first part follows from KMS. The second part follows from J ′(c) =
2 + (1 − F (c))f ′(c)/f(c)2 and that a more concave F has a smaller (more negative) f ′/f <

0.

The proposition implies that offering two priority levels (i.e., regular and priority

services) can perform arbitrarily closely to the revenue-maximizing mechanism if F (c) is

sufficiently concave.

Remark 7. The second half is a continuous-type analog of MSS’s Proposition 1.

Remark 8. In the finite-agent version of GW,8 the proposition implies that offering two

priority levels (i.e., priority and regular services) maximizes the provider’s revenue if F (c)
is sufficiently concave. PS is only sold to the agent of the highest type (VIP).

Proposition 4. The provider can obtain at least half the maximal revenue by offering two

priority levels (i.e., priority and regular services).

Proof. By GW, when the price of PS is p, the cutoff type indifferent between both levels is

−p− c∗(p)1 − F (c∗(p))
2 = −c∗(p)

(
1 − F (c∗(p))

2

)
⇐⇒ c∗(p) = 2p.

Thus, the maximal revenue by offering two levels is maxR2 ≡ maxp p(1 − F (2p)) =
maxp p(1 − F (p))/2. Consider the auxiliary screening problem of selling an indivisible

item to one buyer, in which a standard result implies a simple posted-price mechanism

is optimal (see Börgers, 2015, Proposition 2.5). In other words, denote M = {q : [0, c̄] →
[0, 1] | q increasing}, then maxq∈M

∫ c̄

0 J(c)q(c) dF (c) = maxp p(1 − F (p)), and any max-

imizer q∗ must be an extreme point of M (i.e., a posted-price mechanism). Because

MPS(F ) ⊆ M, we have

maxR = max
s∈MPS(F )

∫ c̄

0
J(c)s(c) dF (c) < max

q∈M

∫ c̄

0
J(c)q(c) dF (c) = max

p
p(1 − F (p)) = 2 maxR2.

8The provider will need to learn the set of agents’ type realizations before setting the priority levels and
payment schedule. This assumption is not required in MSS because the principal does not need to design
the payment (instead, agents “pay” their effort costs autonomously).
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The inequality is strict because an extreme point of M (i.e., a posted-price mechanism)

cannot be a mean-preserving spread of F in the quantile space.

Remark 9. The result on the lower bound does not require the IFR property or the

regularity condition.

Intuitively, in the auxiliary problem of selling a (continuum of) indivisible item to a

(continuum of) consumer, selling an item to one consumer has no externalities on others.

By contrast, negative externalities are present when selling priority levels (or allocating

status)—for example, the seller cannot offer the highest priority to all at face value. Thus,

the latter is subject to an additional constraint, resulting in a (strictly) less revenue.

3.2 Consumer welfare maximization

The consumer welfare maximization problem is given by

max
t(c),p(c)

∫ c̄

0
U(c) dF (c) (12)

subject to constraints (5)–(9). The customer’s welfare can be written as

W =
∫ c̄

0
U(c) dF (c) =

∫ c̄

0

(
−1 − F (c)

f(c)

)
t(c) dF (c) + U(0). (13)

Because p(0) ≥ 0, U(0) = −p(0) ≥ 0 (IR) implies U(0) = p(0) = 0.9 The revenue

maximization problem is equivalent to

max
s∈MPS(F )

∫ c̄

0

(
1 − F (c)
f(c)

)
s(c) dF (c) − E[c] (14)

where s(c) = 1−t(c) is increasing. Proposition 2 in KMS immediately implies the following

results.

Proposition 5 (Cf. GW’s Proposition 7). Adding more priority levels increases the cus-

tomers’ welfare if and only if 1−F (c)
f(c) is increasing and decreases the customers’ welfare if

1−F (c)
f(c) is decreasing. Without priority service, the customers’ welfare is −E[c]/2.

Remark 10. GW’s Proposition 7 shows the sufficiency of IFR property (1−F (c)
f(c) is decreas-

ing) for no priority service to be consumer welfare-maximizing. Proposition 5 shows

9This would not be true without the assumption p(c) ≥ 0. If negative transfers are allowed and subject
to budget balance, full separation (assortative matching) will maximize consumer welfare because it is
efficient, and transfers can redistribute the efficiency gains among consumers (see, e.g., Gershkov and
Schweinzer, 2010). I thank Alex Gershkov for pointing this out.
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under IFR, adding more priority levels decreases consumer welfare, so offering no PS

maximizes consumer welfare. Proposition 6 will provide a necessary and sufficient condi-

tion.

Corollary 5.1. The consumer welfare-maximizing mechanism

(i) offers no priority service (i.e, total pooling) if 1−F (c)
f(c) is decreasing (IFR);

(ii) induces full separation if and only if 1−F (c)
f(c) is increasing.

Remark 11. Part (ii) provides the necessary and sufficient condition for the counterpart

of GW’s Proposition 7—i.e., the optimality of full separation.

Corollary 5.2. If both c− 1−F (c)
f(c) and 1−F (c)

f(c) are increasing (e.g., Pareto and Weibull distri-

bution), adding more priority levels can increase both the provider’s revenue and consumer

welfare.10 Thus, full separation is both revenue- and welfare-maximizing.

Proposition 6 (Cf. GW’s Proposition 1 and 7). Offering no PS (i.e., total pooling) maxi-

mizes the consumer welfare if and only if
∫ c

0

(
1−F (x)
f(x) − E[c]

)
dF (x) ≥ 0 for all c ∈ [0, c̄].

Proof. Denote H(c) =
∫ c

0
1−F (x)
f(x) dF (x). Then, the condition in the proposition is equiv-

alent to H(c) ≥ H(c̄)F (c) = E[c]F (c) (graphically, H(c) lies above the line connecting

H(0) = 0 and H(c̄) = E[c] in the quantile space). Therefore, H(c̄)F (c), which corresponds

to total pooling, is the convex hull of H (i.e., the largest convex function that lies below

H).11 By Proposition 2 in KMS, this condition is necessary and sufficient for total pooling

(i.e., when PS is not offered) to be welfare-maximizing.

Remark 12. Proposition 6 provides a necessary and sufficient condition for GW’s Propo-

sition 7. Under this condition, customers’ welfare is higher when PS is not offered than

when any k > 1 levels of PS are offered.

GW’s Proposition 1 provides a stronger sufficient condition: E[c] − 1−F (c)
f(c) “changes

sign at most once, from negative to positive” (i.e., single-crosses zero from below) for

consumer welfare to be higher when PS is not offered than when one level of PS is offered,

which implied by the result above. Because
∫ c̄

0
1−F (c)
f(c) dF (c) = E[c], their single-crossing

condition (akin to the first-order stochastic dominance) implies the condition in above

(akin to the second-order stochastic dominance).
10The Pareto distribution has a CDF F (x) = 1 − (β/x)α. When α > 1 and β > 0, both 1−F (x)

f(x) and

x− 1−F (x)
f(x) are strictly increasing. The Weibull distribution has a CDF G(x) = 1 − exp(−xk). When k < 1,

both 1−F (x)
f(x) and x− 1−F (x)

f(x) are strictly increasing.
11A piecewise affine function consisting of other points on H(c), which corresponds to offering more

priority levels, lies above H(c̄)F (c) and leads to lower consumer welfare.
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Remark 13. A sufficient condition is the IFR property, according to Proposition 5.

Moreover, for the highest type c̄, maximizing his utility U(c̄) subject to constraints (5)–

(9) is equivalent to

max
s∈MPS(F )

U(0) +
∫ c̄

0

s(c) − 1
f(c) dF (c). (15)

Because p(0) ≥ 0, (IR) implies U(0) = p(0) = 0. By Proposition 2 in KMS, if f is increasing,

s(c) = 1/2 (i.e., total pooling) maximizes U(c̄). Under total pooling, U(c) is linear (because

U ′(c) = −1/2), and thus U(c) = U(c̄) · c/c̄ for all c ∈ [0, c̄]. With more priority levels, U(c)
is convex (while U(0) = 0 still holds), so U(c) ≤ U(c̄) · c/c̄ for all c ∈ [0, c̄]. Therefore,

s(c) = 1/2 also maximizes U(c) for all c ∈ [0, c̄].

Proposition 7 (Cf. GW’s Proposition 2). Offering no priority service (total pooling) max-

imizes every consumer’s utility if and only if F (c) ≤ c/c̄ (i.e., F first-order stochastic

dominates the uniform distribution). A sufficient condition is that f(c) is increasing.

Proof sketch. U(c̄) =
∫ c̄

0
s(c)−1
f(c) dF (c). Note that

∫ c

0 1/f(x) dF (x) = c, and the condition is

equivalent to
∫ c

0 (1/f(x)−c̄) dF (x) ≥ 0. The rest is similar to the proof of Proposition 6.

Remark 14. GW’s Proposition 2 shows that if F (c) ≤ c/c̄, all consumers are worse off after

the introduction of one level of PS (k = 2) than k = 1. Proposition 7 shows this condition

is necessary and sufficient for all consumers to be worse off after any k > 1 levels of PS

are offered than if no PS is offered (k = 1).

3.3 Discussion on Exclusion

To this point, I have maintained the assumption that the regular service is free so that

there is no exclusion.12 If exclusions are possible, it will affect the feasibility of the waiting

time function t(c) by requiring s(c) = 1 − t(c) to be a mean-preserving spread of F (c) (in

the quantile space) for the included types only. For example, if the provider excludes

c ∈ [0, ĉ], then s = 1 − t ∈ MPS(F ) on [ĉ, c̄] (in the quantile space).13 This effect on

feasibility is also present in the standard monopoly problem (e.g. Mussa and Rosen,

12MSS do not consider exclusion either, while adding more status levels also lowers the utility of the
lower types (who have higher costs).

13In other words, if low types are excluded, the feasibility condition in Theorem 1 becomes: s is weakly
majorized by F , denoted by s ∈ MPSw(F ), that is,∫ 1

x

s(c) dF (c) ≥
∫ 1

x

F (c) dF (c),

and the equality need not hold at x = 0.
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1978), where the revenue-maximizing seller will exclude agents with negative marginal

revenue (J(θ) < 0), while no agents will be excluded in welfare maximization. However,

the participation constraint is trickier here because the consumer’s reservation utility,

which equals the value of the service to him, is ambiguous. This calls for introducing the

value of the service to the model, as in GW’s Section IV.

4 Endogenous Pricing of the Regular Service

In GW’s Section IV, they allow for endogenous pricing of the regular service (and hence

exclusion) and introduce an additional variable—the value of the service to the consumer.

They assume the consumer has a unidimensional type θ ∈ [0, θ̄] that determines their unit

cost of waiting, c(θ), and value of the service, v(θ). The consumer’s utility is v(θ)−p− tc(θ).

Abusing notations, denote the CDF of type θ by F (θ) and the density by f(θ) > 0 on the

support [0, θ̄]. Denote U(θ) = v(θ) − p(θ) − t(θ)c(θ).

I maintain their assumptions that v(θ) > 0, c(θ) > 0, v′(θ) ≥ 0, c′(θ) ≥ 0, v′′(θ) ≤ 0,

c′′(θ) ≥ 0, and v′(θ) > c′(θ) (for low-type exclusion in their Section IV.A).14 I further assume

v(0) − c(0) ≥ 0.

Lemma 2. A direct mechanism {p(θ), t(θ)} is incentive-compatible if and only if

• there exists a cutoff type θ̂ ∈ [0, θ̄] such that U(θ) ≥ 0 if and only if θ ≥ θ̂,

• U(θ) = U(θ̂) +
∫ θ

θ̂
(v′(x) − t(x)c′(x)) dx for all θ ∈ [θ̂, θ̄], and

• t(θ) is decreasing.

Note that (IC) implies U ′(θ) = v′(θ)−t(θ)c′(θ) > 0 because v′(θ) > c′(θ) and t(θ) ∈ [0, 1],
so only low types will be excluded.

4.1 Revenue maximization

The revenue maximization problem is given by

max
t(θ),p(θ),θ̂

∫ θ̄

θ̂

p(θ) dF (θ) (16)

14In Section IV.B, they assume v′(θ) < c′(θ), which leads to high-type exclusion.
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subject to the following constraints on [θ̂, θ̄]:

p(θ) ≥ 0 (17)

U(θ) ≡ v(θ) − p(θ) − t(θ)c(θ) ≥ 0 (PC) (18)

v(θ) − p(θ) − t(θ)c(θ) = U(θ̂) +
∫ θ

θ̂

(v′(x) − t(x)c′(x)) dx (IC) (19)

t(θ) is decreasing (20)

s ≡ 1 − t ∈ MPSw(F ) (MPSw) (21)

Denote Jc(θ) = c(θ) − 1−F (θ)
f(θ) c′(θ), which equals J(θ) if c(θ) = θ and is increasing if and

only if J ′(θ)c′(θ) ≥ 1−F (θ)
f(θ) c′′(θ). Analogous to the previous section, for any given cutoff

θ̂ ∈ [0, θ̄], the revenue maximization problem is equivalent to

max
s∈MPS(F ) on [θ̂,θ̄]

∫ θ̄

θ̂

Jc(θ)s(θ) dF (θ)+
∫ θ̄

θ̂

[
(v(θ) − c(θ)) − 1 − F (θ)

f(θ) (v′(θ) − c′(θ)) − U(θ̂)
]

dF (θ)

(22)

where s(θ) = 1 − t(θ) is increasing. Because U(θ) ≥ 0 (IR), it is optimal to set U(θ̂) = 0.15

Assume Jc(θ) is increasing; then by Proposition 2 in KMS, the solution is t∗(θ) = 1 − F (θ)
(i.e., s∗(θ) = F (θ)) for θ ≥ θ̂. Now we solve for the optimal cutoff θ̂.

max
θ̂∈[0,θ̄]

R(θ̂) = max
θ̂∈[0,θ̄]

∫ θ̄

θ̂

[
Jc(θ)F (θ) + (v(θ) − c(θ)) − 1 − F (θ)

f(θ) (v′(θ) − c′(θ))
]

dF (θ) (23)

Denote Jvc(θ) = (v(θ) − c(θ)) − 1−F (θ)
f(θ) (v′(θ) − c′(θ)). Assume R is concave; the optimal

cutoff for revenue maximization, θ̂∗, is given by the first-order condition

R′(θ̂∗) = −(Jc(θ̂∗)F (θ̂∗) + Jvc(θ̂∗))f(θ̂∗) ≤ 0, R′(θ̂∗) · θ̂∗ = 0 (24)

Proposition 8. Assume c(θ)− 1−F (θ)
f(θ) c′(θ) is increasing and R is quasi-concave. The revenue-

maximizing mechanism excludes types below θ̂∗ and fully separates types above θ̂∗. In

particular, it has no exclusion (θ̂∗ = 0) if and only if v(0) − c(0) − v′(0)−c′(0)
f(0) ≥ 0.

15Because v(0) − c(0) ≥ 0 and v′(0) > c′(0), p(θ̂) = v(θ̂) − t(θ̂)c(θ̂) ≥ 0 is satisfied.
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4.2 Consumer welfare maximization

The consumer welfare maximization problem is given by

max
t(θ),p(θ),θ̂

∫ θ̄

θ̂

U(θ) dF (θ) (25)

subject to constraints (17)–(21) on [θ̂, θ̄].
Analogous to the previous section, for any given cutoff θ̂ ∈ [0, θ̄], the welfare maxi-

mization problem is equivalent to

max
s∈MPS(F ) on [θ̂,θ̄]

∫ θ̄

θ̂

(
1 − F (θ)
f(θ)

)
c′(θ)s(θ) dF (θ)+

∫ θ̄

θ̂

(
1 − F (θ)
f(θ) (v′(θ) − c′(θ)) + U(θ̂)

)
dF (θ)

(26)

Assume 1−F (θ)
f(θ) c′(θ) is decreasing. Then, the optimal t∗(θ) pools all types θ ∈ [θ̂, θ̄], that is,

t∗(θ) = 1 − 1
1 − F (θ̂)

∫ θ̄

θ̂

F (θ) dF (θ) = (1 − F (θ̂))/2. (27)

Now we solve for the optimal cutoff θ̂.

max
θ̂∈[0,θ̄]

W (θ̂) = max
θ̂∈[0,θ̄]

∫ θ̄

θ̂

1 − F (θ)
f(θ) [v′(θ) − (1 − F (θ̂))c′(θ)/2] + U(θ̂) dF (θ) (28)

Note that W (θ̂) is discontinuous at θ̂ = 0. At θ̂ = 0, it is optimal to set p(0) = 0 and thus

U(0) = v(0) − t(0)c(0) = v(0) − c(0)/2 ≥ 0, so

W (0) =
∫ θ̄

0

1 − F (θ)
f(θ) (v′(θ) − c′(θ)/2) dF (θ) + (v(0) − c(0)/2). (29)

If θ̂ > 0, it has to be U(θ̂) = 0, so the maximal welfare is

max
θ̂∈[0,θ̄]

W (θ̂)|U(θ̂)=0 = max
θ̂∈[0,θ̄]

∫ θ̄

θ̂

1 − F (θ)
f(θ) [v′(θ) − (1 − F (θ̂))c′(θ)/2] dF (θ). (30)

We need to compare W (0) and maxθ̂∈[0,θ̄] W (θ̂)|U(θ̂)=0. If W (0) ≥ maxθ̂∈[0,θ̄] W (θ̂)|U(θ̂)=0,

then no exclusion θ̂∗∗ = 0 is optimal. Otherwise, some exclusion θ̂∗∗ = arg maxθ̂∈[0,θ̄] W (θ̂)|U(θ̂)=0 >
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0 is optimal; the first-order condition is

W ′(θ̂)|U(θ̂)=0 = −(1 − F (θ̂))(v′(θ̂) − (1 − F (θ̂))c′(θ̂)/2) + f(θ̂)
∫ θ̄

θ̂

1 − F (θ)
2f(θ) c′(θ) dF (θ) (31)

Intuitively, exclusion has a “fixed cost” to consumer welfare as it would involve setting

a positive price p(θ̂) = v(θ̂)− t(θ̂)c(θ̂) ≥ 0. On the other hand, exclusion may also increase

consumer welfare by reducing the waiting time for the remaining consumers. Perhaps

surprisingly, if 1−F (θ)
f(θ) c′(θ) is decreasing (which implies the IFR property), W ′(θ̂) < 0 for all

θ̂ ∈ [0, θ̄], so exclusion always reduces consumer welfare.

Proposition 9. Assume 1−F (θ)
f(θ) c′(θ) is decreasing (which implies the IFR property). The

consumer welfare-maximizing mechanism has no exclusion and offers one priority level

to all types.

5 Discussions

With a feasibility condition in Theorem 1, the mechanism design approach can be applied

to allocation problems in which allocating the object to one agent has externalities on

other agents, such as waiting time (Gershkov and Winter, 2023), status (Moldovanu et al.,

2007), and conspicuous goods (Rayo, 2013).

By applying this approach to GW’s model, I study the effect of PS on the monopoly

provider’s revenue and consumer welfare and provide the necessary and sufficient con-

ditions for some of their propositions while allowing for stochastic priority levels. In

particular, I show that the trade-off between the provider’s revenue and consumer welfare

is less stark. Although an increasing (decreasing) failure rate implies that adding more

priority levels increases (may decrease) the revenue but decreases (increases) consumer

welfare at the same time, it is not a necessary condition. Thus, if the cost distribution has

a decreasing failure rate but satisfies Myerson’s regularity condition (e.g., Pareto distri-

bution), the two objectives are aligned—adding more priority levels will increase both

the revenue and consumer welfare. An all-pay auction among customers can implement

full separation. Moreover, the provider can guarantee at least half the maximal revenue

by offering two priority levels. The approximation can be arbitrarily close if the cost

distribution is sufficiently concave.
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