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Gershkov and Winter (2023, henceforth GW) study a model of priority service (PS)

and analyze its welfare implications on consumers. They show that introducing PS

can be detrimental to consumer welfare when the monopoly service provider extracts

more revenue than the efficiency gains. For multiple priority levels, they find that if

the distribution has an increasing failure rate (IFR), the provider’s revenue is strictly

increasing in the number of priority levels, whereas the customers’ welfare is higher if PS

is not offered than if multiple priority levels are offered.

In this note, I reformulate their model (with a monopoly service provider) as a mech-

anism design problem under a feasibility condition. Thus, I rewrite the revenue and

consumer welfare maximization problems as linear optimization problems under ma-

jorization constraints. Using the techniques in Kleiner, Moldovanu, and Strack (2021),

I provide the necessary and sufficient conditions for GW’s Propositions 1, 2, 7, and 8,

while allowing for stochastic priority levels. In particular, consumer welfare is decreasing

(increasing) in the number of priority levels if and only if the failure rate is increasing

(decreasing), whereas an increasing failure rate is sufficient (but not necessary) for the

provider’s revenue to be increasing in the number of priority levels. Thus, the trade-off be-

tween the provider’s revenue and consumer welfare is less stark—for some distributions

with decreasing failure rates (e.g., exponential and Weibull distributions), increasing

the number of priority levels can increase both. Infinitely many priority levels can be

implemented by an all-pay auction. This approach can also be applied to the model of

contests for status by Moldovanu, Sela, and Shi (2007).
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1 Model

In their benchmark model, a monopoly service provider faces a continuum of customers

of mass 1 with heterogeneous unit costs of waiting (types), denoted by c, which has a

distribution F with bounded support [0, c̄] and density f(c) > 0. A customer with type

c who gets service at time t and pays p ≥ 0 has a utility of −p − tc. The provider can

serve a single customer at each instant. They normalize the service time of a mass m of

consumers to be exactly m units of time and the cost of the provider to be zero, which

implies t ∈ [0, 1] because the total mass of customers is 1.

They assume the price of the regular service is zero so that there is no exclusion in the

benchmark model. Then, in Section IV, they allow for endogenous pricing of the regular

service (and thus exclusion) by introducing the value of the service to the consumer. I

maintain this assumption first and consider endogenous pricing of the regular service

and exclusion in Section 4, as in GW’s Section IV.

2 A Mechanism Design Approach

It is without loss to consider a direct mechanism {p(c), t(c)}. One can view the direct

mechanism as consisting of an ex-post payment pi : [0, c̄]n → R+ and a (potentially

random) ex-post waiting time t : [0, c̄]n × Ω → [0, 1]n, where n is the number of con-

sumers; and p(c) ≡ pi(ci) = Ec−i
[pi(ci, c−i)|ci] and t(c) ≡ ti(ci) = Ec−i

[ti(ci, c−i, ω)|ci] are

the interim expected payment and waiting time. Denote U(c) = −p(c) − t(c)c.

Lemma 1. A direct mechanism {p(c), t(c)} is incentive-compatible if and only if

• U(c) = U(0) −
∫ c

0 t(x) dx for all c ∈ [0, c̄], and

• t(c) is decreasing.

Alternative interpretation. The provider designs a queuing scheme ℓ : [0, c̄] → ∆L that

maps the consumer’s type c to a (possibly stochastic) priority level ℓ(c) along with a

payment p : [0, c̄] → R+; the higher the priority level, the less time he needs to wait.1

If there are k ≥ 1 priority levels, L = {1, . . . , k}. If there are infinitely many priority

levels, L = [0, 1]. When priority levels are deterministic, ℓ(c) ∈ L is degenerate. By the

assumptions on the service time, for a given level ℓ0 ∈ L, the expected waiting time

(conditional on ℓ0) is τ(ℓ0) = Pr(ℓ(c) > ℓ0) + Pr(ℓ(c) = ℓ0)/2. For deterministic priority

levels, incentive compatibility requires that ℓ(c) must be (weakly) increasing, so the

1This can be implemented by a pricing scheme as a function of the priority level.
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consumer’s expected waiting time is t(c) = 1 − τ(ℓ(c)) = 1 − E[F (c̃)|ℓ(c̃) = ℓ(c)]. For

potentially stochastic priority levels, the expected waiting time is t(c) = 1−Eℓ̃∼ℓ(c)[τ(ℓ̃)] =
1 − Eℓ̃∼ℓ(c)[E[F (c̃)|ℓ̃]].2

A decreasing waiting time function t(c), albeit incentive-compatible, is not necessarily

feasible because it may be unable to be induced by an ex-post allocation (or queuing

scheme). Formally, say t(c) is feasible if there exists an ex-post allocation t (or a queuing

scheme ℓ) that induces t(c) as the interim waiting time. Now I characterize the necessary

and sufficient condition for a decreasing t(c) to be feasible.

It is convenient to denote the consumer’s priority value by s(c) = 1 − t(c), which

quantifies priority by the time he saved compared to being served last. In other words,

s(c) = Eℓ̃∼ℓ(c)[E[F (c̃)|ℓ̃]], where ℓ(c) is his (relative) priority level.

Theorem 2 (Feasibilty). A decreasing t(c) is feasible if and only if s(c) = 1 − t(c) is a

mean-preserving spread of F (c) in the quantile space, denoted by s ∈ MPS(F ), that is,∫ x

0
s(c) dF (c) ≥

∫ x

0
F (c) dF (c) for all x ∈ [0, c̄], (1)∫ c̄

0
s(c) dF (c) =

∫ c̄

0
F (c) dF (c) = 1/2. (2)

Proof sketch. À la Kleiner, Moldovanu, and Strack (2021, Theorem 3).

Remark 1. The condition resembles the symmetric version of Border’s Theorem in

reduced-form auctions (see Maskin and Riley, 1984; Matthews, 1984; Border, 1991).

Remark 2. If the priority levels ℓ(c) are deterministic, s(c) = 1 − t(c) can only be an

extreme point of MPS(F ) (either the majorization constraint or the monotonicity con-

straint binds) (see Kleiner, Moldovanu, and Strack, 2021, Theorem 1). Since I allow for

stochastic priority levels, t(c) can take other forms.

Remark 3. An analog of the theorem also applies to Moldovanu, Sela, and Shi (2007) with

a continuum of agents, in which the feasibility condition on the value of status can be

written as s(θ) ∈ MPS(2F − 1), and the total value is normalized to E[s] = E[2F − 1] = 0.

The intuition is that the provider can induce full separation (i.e., t(c) = 1 − F (c)) by

offering infinitely many priority levels and serving every type in the descending order of

their costs. Any pooling of different types into the same priority level makes s ≡ 1 − t a

mean-preserving spread of F .

2For deterministic priority levels, it can be viewed as a monotone categorization problem (see Rayo
(2013) and Onuchic and Ray (2023)). See also Xiao (2024) for potentially stochastic levels.
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Example 2.1. Suppose there are two priority levels—regular service ({pL, tL}) and priority

service ({pH , tH}), where pL = 0 (no exclusion). Denote the cutoff type by c∗. Then, the

waiting time is tL = 1 − F (c∗)/2 for c < c∗ and tH = (1 − F (c∗))/2 for c ≥ c∗. It is easy to

check that E[t] = 1/2 and that
∫ c

0 t(c′) dF (c′) ≤
∫ c

0 (1 − F (c′)) dF (c′) for all c ∈ [0, c̄] (with

equality at c∗ and c̄).

3 Optimal Mechanism

Two extreme mechanisms are particularly of interest: full separation (t(c) = 1 − F (c))

and total pooling (t(c) = 1/2)3 ; the former can be induced by offering infinitely many

priority service levels, and the latter can be induced by offering no priority service. Note

that I allow for stochastic priority levels.

For this section, I maintain GW’s assumption in the benchmark model that the regular

service {pL, tL} is free (pL = 0) so that there is no exclusion. Thus, the type-c consumer’s

reservation utility is U(c) = −tLc ≤ −tc, where tL is the expected waiting time of the

regular service, which is endogenously determined by the scheme t(c).

3.1 Revenue maximization

I first consider the optimal mechanism that maximizes the provider’s revenue. The

revenue maximization problem is given by

max
t(c),p(c)

∫ c̄

0
p(c) dF (c) (3)

subject to

p(c) ≥ 0 (4)

U(c) ≡ −p(c) − t(c)c ≥ −tLc (IR) (5)

− p(c) − t(c)c = U(0) −
∫ c

0
t(x) dx (IC) (6)

t(c) is decreasing (7)

s ≡ 1 − t ∈ MPS(F ) (MPS) (8)

3Both are the extreme points of MPS(F).
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The revenue is given by

R =
∫ c̄

0
p(c) dF (c) =

∫ c̄

0

(
1 − F (c)
f(c) − c

)
t(c) dF (c) − U(0). (9)

Because U(0) = −p(0) ≥ 0 (IR), it is optimal to set U(0) = p(0) = 0 (even if p were

allowed to be negative). Denote J(c) = c− 1−F (c)
f(c) . The revenue maximization problem is

equivalent to

max
s∈MPS(F )

∫ c̄

0
J(c)s(c) dF (c) (10)

where s(c) = 1 − t(c) is increasing.

Note that I maintain the assumption that the regular service is free so that there is no

exclusion. Kleiner, Moldovanu, and Strack (2021, Proposition 2) immediately implies the

following results.

Proposition 1 (Cf. GW’s Proposition 8). The provider’s revenue is (strictly) increasing in

the number of priority levels if and only if c− 1−F (c)
f(c) is (strictly) increasing.

Remark 4. GW’s Proposition 8 provides a sufficient condition for this result: F satisfies

the IFR property (i.e., 1−F (c)
f(c) is decreasing).

Corollary 1.1. The revenue-maximizing mechanism offers infinitely many priority levels

(i.e., full separation) if and only if c− 1−F (c)
f(c) is increasing, which is payoff equivalent to an

all-pay auction.

Indeed, infinitely many priority levels can be implemented by an all-pay auction, in

which the more money a consumer pays, the more ahead he is in the line (and the less

time he needs to wait).

3.2 Consumer welfare maximization

The consumer welfare maximization problem is given by

max
t(c),p(c)

∫ c̄

0
U(c) dF (c) (11)

subject to constraints (4)–(8). Analogous to the previous derivations, the customer’s

welfare can be written as

W =
∫ c̄

0
U(c) dF (c) =

∫ c̄

0

(
−1 − F (c)

f(c)

)
t(c) dF (c) + U(0). (12)
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Because p(0) ≥ 0, U(0) = −p(0) ≥ 0 (IR) implies U(0) = p(0) = 0.4 The revenue

maximization problem is equivalent to

max
s∈MPS(F )

∫ c̄

0

(
1 − F (c)
f(c)

)
s(c) dF (c) − E[c] (13)

where s(c) = 1 − t(c) is increasing. Kleiner, Moldovanu, and Strack (2021, Proposition 2)

immediately implies the following results.

Proposition 2 (Cf. GW’s Proposition 7). The customers’ welfare is increasing (decreasing)

in the number of priority levels if and only if 1−F (c)
f(c) is increasing (decreasing). Without

priority service, the customers’ welfare is −E[c]/2.

Remark 5. GW’s Proposition 7 shows the sufficiency of IFR property (1−F (c)
f(c) is decreasing)

for no priority service to be consumer welfare-maximizing.

Corollary 2.1. The consumer welfare-maximizing mechanism

(i) offers no priority service (i.e, total pooling) if and only if 1−F (c)
f(c) is decreasing (IFR);

(ii) offers infinitely many priority levels (i.e., full separation) if and only if 1−F (c)
f(c) is

increasing.

Corollary 2.2. If both c− 1−F (c)
f(c) and 1−F (c)

f(c) are increasing (e.g., exponential and Weibull

distribution), increasing the number of priority levels can increase both the provider’s

revenue and consumer welfare.5 Thus, full separation is both revenue- and welfare-

maximizing.

Moreover, for the highest type c̄, maximizing his utility U(c̄) subject to constraints (4)–

(8) is equivalent to

max
s∈MPS(F )

U(0) +
∫ c̄

0

s(c) − 1
f(c) dF (c). (14)

Because p(0) ≥ 0, (IR) implies U(0) = p(0) = 0. By Kleiner, Moldovanu, and Strack (2021,

Proposition 2), if f is increasing, s(c) = 1/2 maximizes U(c̄). In this case, U(c) is linear

(because U ′(c) = −1/2), and thus U(c) = U(c̄) · c/c̄ for all c ∈ [0, c̄]. With more priority

4This would not be true without the assumption p(c) ≥ 0. If negative transfers are allowed and subject
to budget balance, full separation (assortative matching) will maximize consumer welfare because it is
efficient, and transfers can redistribute the efficiency gains among consumers (see, e.g., Gershkov and
Schweinzer, 2010). I thank Alex Gershkov for pointing this out.

5The Weibull distribution is a distribution on R+ with CDF G(x) = 1 − exp(−xk), where k ≥ 0 is the
shape parameter. When k = 1, it is the same as the exponential distribution. When k < 1, both 1−F (x)

f(x) and

x− 1−F (x)
f(x) are strictly increasing.
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levels, U(c) is convex (while U(0) = 0 still holds), so U(c) ≤ U(c̄) · c/c̄ for all c ∈ [0, c̄].
Therefore, s(c) = 1/2 also maximizes U(c) for all c ∈ [0, c̄].

Proposition 3 (Cf. GW’s Proposition 2). If f is increasing, offering no priority service (total

pooling) maximizes every consumer’s utility.

Remark 6. Proposition 3 shows if f is increasing, all consumers are worse off after any

k > 1 levels of PS are offered than if no PS is offered (k = 1). GW’s Proposition 2 shows

that under this assumption, all consumers are worse off after the introduction of one

level of PS (k = 2) than k = 1.

3.3 Regular Service and Priority Service

In GW’s Section III, the provider can have at most two priority levels—regular service and

priority service. I denote them by {pL, tL} (regular) and {pH , tH} (priority), respectively.

Under the assumption that the price of the regular service pL = 0, there is no exclusion.

Proposition 4 (Cf. GW’s Proposition 1). The customers’ welfare is higher when PS is not

offered than when PS is offered if and only if
∫ c

0

(
1−F (x)
f(x)

)
dF (x) ≥ E[c] for all c ∈ [0, c̄].

Remark 7. GW’s Proposition 1 provides a sufficient condition for this result: E[c] − 1−F (c)
f(c)

“changes sign at most once, from negative to positive” (i.e., single-crosses zero from

below). Because
∫ c̄

0
1−F (x)
f(x) dF (c) = E[c], their single-crossing condition (akin to the first-

order stochastic dominance) implies the condition in Corollary 4 (akin to the second-

order stochastic dominance).

Remark 8. A sufficient condition is the IFR property, according to Proposition 2.

3.4 Discussion on Exclusion

To this point, I have maintained the assumption that the regular service is free so that

there is no exclusion. If exclusions are possible, it will affect the feasibility of the waiting

time function t(c) by requiring 1 − t to be a mean-preserving spread of 1 − F (c) (in the

quantile space) for included types. For example, if the provider excludes c ∈ [0, ĉ], then

s = 1 − t ∈ MPS(F ) on [ĉ, c̄] (in the quantile space).6 This effect on feasibility is also

6In other words, if low types are excluded, the feasibility condition in Theorem 2 becomes: s is weakly
majorized by F , denoted by s ∈ MPSw(F ), that is,∫ 1

x

s(c) dF (c) ≥
∫ 1

x

F (c) dF (c),

and the equality need not hold at x = 0.
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present in the standard monopoly problem (e.g. Mussa and Rosen, 1978), where the

revenue-maximizing seller will exclude agents with negative marginal revenue (J(θ) < 0),

whereas no agents will be excluded in welfare maximization. However, the participation

constraint is trickier here because the consumer’s reservation utility, which equals the

value of the service to him, is ambiguous.7 This calls for introducing the value of the

service to the model, as in GW’s Section IV.

4 Endogenous Pricing of the Regular Service

In GW’s Section IV, they allow for endogenous pricing of the regular service (and hence

exclusion) and introduce an additional variable—the value of the service to the consumer.

They assume the consumer has a unidimensional type θ ∈ [0, θ̄] that determines their unit

cost of waiting, c(θ), and value of the service, v(θ). The consumer’s utility is v(θ)−p− tc(θ).

Abusing notations, denote the CDF of type θ by F (θ) and the density by f(θ) > 0 on the

support [0, θ̄]. Denote U(θ) = v(θ) − p(θ) − t(θ)c(θ).

I maintain their assumptions that v(θ) > 0, c(θ) > 0, v′(θ) ≥ 0, c′(θ) ≥ 0, and v′(θ) >
c′(θ) (for low-type exclusion in their Section IV.A).8

Lemma 3. A direct mechanism {p(θ), t(θ)} is incentive-compatible if and only if

• there exists a cutoff type θ̂ ∈ [0, θ̄] such that U(θ) ≥ 0 if and only if θ ≥ θ̂,

• U(θ) = U(θ̂) +
∫ θ

θ̂
(v′(x) − t(x)c′(x)) dx for all θ ∈ [θ̂, θ̄], and

• t(θ) is decreasing.

Note that (IC) implies U ′(θ) = v′(θ)−t(θ)c′(θ) > 0 because v′(θ) > c′(θ) and t(θ) ∈ [0, 1],
so only low types will excluded.

4.1 Revenue maximization

The revenue maximization problem is given by

max
t(θ),p(θ),θ̂

∫ θ̄

θ̂

p(θ) dF (θ) (15)

7In Moldovanu, Sela, and Shi (2007), the reservation utility is zero due to normalization.
8In Section IV.B, they assume v′(θ) < c′(θ), which leads to high-type exclusion.
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subject to the following constraints on [θ̂, θ̄]:

p(θ) ≥ 0 (16)

U(θ) ≡ v(θ) − p(θ) − t(θ)c(θ) ≥ 0 (IR) (17)

v(θ) − p(θ) − t(θ)c(θ) = U(θ̂) +
∫ θ

θ̂

(v′(x) − t(x)c′(x)) dx (IC) (18)

t(θ) is decreasing (19)

s ≡ 1 − t ∈ MPS(F ) on [θ̂, θ̄] (MPSw) (20)

Denote Jc(θ) = c(θ) − 1−F (θ)
f(θ) c′(θ), which equals J(θ) if c(θ) = θ and is increasing if F

satisfies the IFR property. Analogous to the previous section, for any given cutoff θ̂ ∈ [0, θ̄],
the revenue maximization problem is equivalent to

max
s∈MPS(F ) on [θ̂,θ̄]

∫ θ̄

θ̂

Jc(θ)s(θ) dF (θ)+
∫ θ̄

θ̂

[
(v(θ) − c(θ)) − 1 − F (θ)

f(θ) (v′(θ) − c′(θ)) − U(θ̂)
]

dF (θ)

(21)

where s(θ) = 1 − t(θ) is increasing. Because U(θ̂) ≥ 0 (IR), it is optimal to set U(θ̂) = 0.

Because IFR implies that Jc(θ) is increasing, by Kleiner, Moldovanu, and Strack (2021,

Proposition 2), the solution is t(θ) = 1 − F (θ) (i.e., s(θ) = F (θ)). Now we solve for the

optimal cutoff θ̂.

max
θ̂∈[0,θ̄]

R(θ̂) = max
θ̂∈[0,θ̄]

∫ θ̄

θ̂

[
Jc(θ)F (θ) + (v(θ) − c(θ)) − 1 − F (θ)

f(θ) (v′(θ) − c′(θ))
]

dF (θ) (22)

Denote Jvc(θ) = (v(θ) − c(θ)) − 1−F (θ)
f(θ) (v′(θ) − c′(θ)). The FOC is

R′(θ̂) = −(Jc(θ̂)F (θ̂) + Jvc(θ̂))f(θ̂) ≤ 0, R′(θ̂) · θ̂ = 0 (23)

IFR implies that Jc and Jvc are increasing, so R is concave if f is also increasing.

Proposition 5. Assume F satisfies the IFR property and R is concave. The revenue-

maximizing mechanism excludes types below θ̂∗ (given by equation (23)) and offers in-

finitely many priority levels to types above θ̂∗. In particular, it has no exclusion (θ̂∗ = 0) if

and only if v(0) − c(0) − v′(0)−c′(0)
f(0) ≥ 0.
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4.2 Consumer welfare maximization

The consumer welfare maximization problem is given by

max
t(θ),p(θ),θ̂

∫ θ̄

θ̂

U(θ) dF (θ) (24)

subject to constraints (16)–(20) on [θ̂, θ̄].
Analogous to the previous section, for any given cutoff θ̂ ∈ [0, θ̄], the welfare maxi-

mization problem is equivalent to

max
s∈MPS(F ) on [θ̂,θ̄]

∫ θ̄

θ̂

(
1 − F (θ)
f(θ)

)
c′(θ)s(θ) dF (θ)+

∫ θ̄

θ̂

(
1 − F (θ)
f(θ) (v′(θ) − c′(θ)) + U(θ̂)

)
dF (θ)

(25)

Assume 1−F (θ)
f(θ) c′(θ) is decreasing. Then, the optimal t(θ) pools all types θ ∈ [θ̂, θ̄], that is,

t(θ) =
∫ θ̄

θ̂

1 − F (θ) dF (θ) = 1/2 + F (θ̂)2/2 − F (θ̂). (26)

Now we solve for the optimal cutoff θ̂.

max
θ̂∈[0,θ̄]

W (θ̂) = max
θ̂∈[0,θ̄]

∫ θ̄

θ̂

1 − F (θ)
f(θ) [v′(θ)− c′(θ)/2 + c′(θ)(F (θ̂)−F (θ̂)2/2)] +U(θ̂) dF (θ) (27)

Note that W (θ̂) is discontinuous at θ̂ = 0. At θ̂ = 0, it is optimal to set p(0) = 0 and

U(0) = v(0) − t(0)c(0) = v(0) − c(0)/2, so

W (0) =
∫ θ̄

0

1 − F (θ)
f(θ) (v′(θ) − c′(θ)/2) dF (θ) + (v(0) − c(0)/2). (28)

For θ̂ > 0, U(θ̂) = 0, so

W ′(θ̂) = −(1 − F (θ̂))(v′(θ̂) − c′(θ̂)/2) + (1 − F (θ̂))c′(θ̂)(F (θ̂) − F (θ̂)2/2)

+
∫ θ̄

θ̂

1 − F (θ)
f(θ) c′(θ)(1 − F (θ̂))f(θ̂) dF (θ)

(29)

and we need to compare W (0) and supθ̂∈(0,θ̄] W (θ̂). If W (0) ≥ supθ̂∈(0,θ̄] W (θ̂), then θ̂∗ = 0
is optimal. Otherwise, some exclusion θ̂∗ > 0 is optimal (assume W (θ) is concave; then θ̂∗

is the solution to W ′(θ̂) = 0 in equation (29)).

Proposition 6. Assume 1−F (θ)
f(θ) c′(θ) is decreasing. The consumer welfare-maximizing mech-
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anism excludes types below θ̂∗ and offers one priority level to types above θ̂∗.

5 Discussions

With a feasibility condition à la Theorem 2, the mechanism design approach can be ap-

plied to allocation problems in which allocating the object to one agent has externalities

on other agents, such as waiting time (Gershkov and Winter, 2023), status (Moldovanu,

Sela, and Shi, 2007), and conspicuous goods (Rayo, 2013).

By applying this approach to GW’s model, I study the effect of PS on the monopoly

provider’s revenue and consumer welfare and provide the necessary and sufficient con-

ditions for some of their propositions while allowing for stochastic priority levels. In

particular, I show that the trade-off between the provider’s revenue and consumer welfare

is less stark. Although an increasing (decreasing) failure rate implies that increasing the

number of priority levels increases the revenue but decreases (increases) consumer wel-

fare at the same time, it is not a necessary condition for the former. Thus, for some cost

distributions with decreasing failure rates (e.g., exponential and Weibull distributions),

the two objectives are aligned—increasing the number of priority levels will increase

both the revenue and consumer welfare. Moreover, an all-pay auction among customers

can implement the mechanism with infinitely many priority levels.
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