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The (cumulative) Lagrangian methods developed by Amador et al. (2006) have been

widely used to solve the maximization problems in delegation (e.g. Amador and Bagwell,

2013, 2022; Guo, 2016). In this note, I apply Pontryagin’s maximum principles in the

optimal control theory (advanced by Hellwig (2008, 2010)) to solve these problems, as a

less algebra-intensive alternative. Moreover, in delegation problems with participation

constraints (Amador and Bagwell, 2022), using the hybrid maximum principles (Clarke,

2013), I study the global problem that involves a jump in the allocation at the cutoff

type (due to the participation constraint), instead of the truncated problem at the cutoff.

Thus, I provide necessary and sufficient conditions of price-cap regulation under which a

bang-bang allocation, where the firm either chooses a given action (e.g., price cap) or

shuts down, can be optimal. Whenever this bang-bang allocation is optimal, a take-it-or-

leave-it offer, where the firm either accepts the fixed price set by the regulator or shuts

down, is also optimal (and vice versa).

1 Without participation constraint (Amador and Bagwell,

2013)

I first revisit the delegation problem in Amador and Bagwell (2013) and show that the

Pontryagin approach can be applied to solve the problem. The maximization problem in

Amador and Bagwell (2013) is

max
π:Γ→Π

∫
w(γ, π(γ)) dF (γ) subject to: (1)

γπ(γ) + b(π(γ)) =

∫ γ

γ

π(γ̃)dγ̃ + U for all γ ∈ Γ, (2)

π nondecreasing, (3)
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where U ≡ γπ(γ) + b(π(γ)).1 Define U =
∫ γ

γ
π(γ̃)dγ̃ + U . Rewrite the constraints as

γπ(γ) + b(π(γ)) = U (4)

U̇ = π (5)

π̇ = ν ≥ 0 (6)

U(γ), π(γ) free, (7)

U(γ̄), π(γ̄) free (8)

Set up the Hamiltonian:

H = w(γ, π)f(γ) + λ(γπ(γ) + b(π(γ))− U) + Λπ + µν (9)

where π, U are the state variable and ν is the control variable; Λ is the Hamiltonian

multiplier on U̇ , µ is the Hamiltonian multiplier on q̇, and λ is the Lagrangian multiplier

on γπ(γ) + b(π(γ)) = U .

By the Pontryagin’s maximum principle (Hellwig, 2010, Theorem 4.1),2

−∂H

∂π
= −(wπf + λ(γ + b′(π)) + Λ) = µ̇ (10)

−∂H

∂U
= λ = Λ̇ (11)

∂H

∂ν
= µ ≤ 0, µ(γ) = 0 if q is strictly decreasing at γ (12)

Λ(γ) = 0, µ(γ) = 0 (13)

Λ(γ̄) = 0, µ(γ̄) = 0 (14)

Define πf (γ) = argmaxπ{γπ + b(π)} as the flexible allocation. For the following interval

delegation to be optimal,

π(γ) =


πf (γL); γ ∈ [γ, γL],

πf (γ); γ ∈ (γL, γH),

πf (γH); γ ∈ [γH , γ̄]

(15)

1Note that the standard method is not applicable because transfers are infeasible.
2See the maximum principle in Hellwig (2010, Theorem 4.1) that accounts for the monotonicity condi-

tion without assuming absolute continuity of the state variable π.
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the proposed multipliers are

Λ(γ) =


κ(1− F (γ)), γ ∈ [γH , γ̄] ,

−wπ (γ, πf (γ)) f(γ), γ ∈ (γL, γH) ,

−κF (γ), γ ∈
[
γ, γL

] (16)

µ(γ) =


∫ γ̄

γ
(wπ(γ̃, πf (γH))f(γ̃)− κγ̃f(γ̃) + κ(1− F (γ̃))) dγ̃ ≤ 0, γ ∈ [γH , γ̄] ,

0, γ ∈ (γL, γH) ,

−
∫ γ

γ
(wπ(γ̃, πf (γL))f(γ̃)− κγ̃f(γ̃) + κF (γ̃)) dγ̃ ≤ 0, γ ∈

[
γ, γL

] (17)

The inequality µ(γ) ≤ 0 follows from their assumption (c2) [resp. (c3)] if γH [resp. γL] is

interior. If γH or γL is at the boundary, the corresponding inequality is satisfied trivially.

Sufficiency. By Kamien and Schwartz (1971), the sufficient condition is that the max-

imized Hamiltonian H̄(π, U,Λ, µ, λ) ≡ maxν H(π, U, ν,Λ, µ, λ) is concave in (π, U) for

given (Λ, µ, λ), which requires wππf + λb′′(π) ≤ 0. Following the definition of κ =

infπ,γ{wππ/b
′′(π)}, concavity is satisfied ifΛ+κF is increasing. Therefore, their assumption

(c1): κF (γ)− wπ (γ, πf (γ)) f(γ) is nondecreasing for all γ ∈ [γL, γH ] guarantees concavity

on (γL, γH), and (c2’) and (c3’) guarantees increasing at γ and γ̄, respectively (if γH or γL
are at the boundary).

2 With participation constraint (Amador and Bagwell, 2022)

Amador and Bagwell (2022, henceforth AB) add a participation constraint to the max-

imization program, which makes the problem trickier because the optimal price-cap

allocation q(γ) has a jump at the cutoff type γt. Therefore, they study the truncated

problem at the cutoff instead. Nevertheless, the untruncated problem can still be solved

by optimal control by invoking the maximum principle in the hybrid maximum principle

in Bryson and Ho (1975, Chapter 3.7) for the jump in q(γ) at the the cutoff γt (see also

Clarke, 2013, Chapter 22.5). As in the previous section, I also use the maximum principle

formulated by Hellwig (2008, 2010) to account for the monotonicity of the state variable

q without assuming its absolute continuity.3

3In particular, q̇ does not exist at the cutoff where q has a jump.

3



2.1 The truncated problem in Amador and Bagwell (2022)

Amador and Bagwell (2022) study the following truncated problem (Pt) at the cutoff

type γt. Before applying the hybrid maximum principle to the untruncated problem, I

replicate their result for the truncated problem.

max
qt:Γt(γt)→Q

∫
Γt(γt)

(w (γ, qt(γ))− σ) dF (γ) subject to: (18)

− γqt(γ) + b (qt(γ))− σ −
∫ γt

γ

qt(γ̃)dγ̃ = Ū , for all γ ∈ Γt(γt) (19)

qt(γ) decreasing, for all γ ∈ Γt(γt) (20)

0 ≤ −γqt(γ) + b (qt(γ))− σ, for all γ ∈ Γt(γt), (21)

where Ū ≡ −γtqt(γt)+ b (qt(γt))−σ. Define U(γ) =
∫ γt
γ

q(x)dx+ Ū . Rewrite the constraints

as:4

U(γ) = −γqt(γ) + b(qt(γ))− σ (22)

U̇ = −qt(γ) (23)

q̇t = ν(γ) ≤ 0 (24)

U(γt), qt(γt) ≥ 0 (25)

U(γ), qt(γ) free. (26)

Set up the Hamiltonian

H = [w(qt(γ), γ)− σ]f(γ) + λ(γ)[−γqt(γ) + b(qt(γ))− U(γ)− σ]− Λ(γ)qt(γ) + µ(γ)ν(γ)

(27)

where U, q are state variables and ν is the control variable; Λ is Hamiltonian multiplier on

U̇ and µ is Hamiltonian multiplier on q̇; λ is the Lagrangian multiplier on U = −γqt+ b(qt).

4(IR) is not explicitly written because it is implied by U(γt), qt(γt) ≥ 0 and U̇ = −qt(γ).
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By the Pontryagin’s maximum principle,

−∂H

∂q
= −wqf + λ(γ − b′(q)) + Λ = µ̇ (28)

−∂H

∂U
= λ = Λ̇ (29)

∂H

∂ν
= µ ≥ 0, µ(γ) = 0 if q is strictly decreasing at γ (30)

Λ(γt) ≤ 0, Λ(γt)U(γt) = 0 (31)

µ(γt) ≤ 0, µ(γt)q(γt) = 0 (32)

Λ(γ) = 0, µ(γ) = 0. (33)

Define qf (γ) = argmaxq{b(q)− γq} as the flexible allocation, and denote by qi (γt) = {q :
−γtq + b(q) = σ} the quality level at which an agent is indifferent between producing or

not. For the following price cap (quantity floor) allocation to be optimal,

q⋆t (γ | γt) =

qf (γ); γ ∈ [γ, γH(γt))

qi(γt); γ ∈ [γH(γt), γt]
(34)

the proposed multipliers are

Λ(γ) =


0; γ = γ

wq (γ, qf (γ)) f(γ); γ ∈
(
γ, γH(γt)

)
A+ κ (F (γt)− F (γ)) ; γ ∈ [γH(γt), γt]

(35)

where κ ≡ infq{wqq/b
′′(q)},

A =
1

γt − γH(γt)

[∫ γt

γH(γt)

wq (γ, qi(γt)) f(γ)dγ + κ (γH(γt)− b′ (qi(γt)))F (γt)

]
≥ 0
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as proposed by AB.5

µ(γ) =


∫ γt
γ

wq(γ, qi(γt))f(γ) dγ + κ(γ − b′(qi(γt)))(F (γt)− F (γ))− (γt − γ)A ≥ 0, γ ∈ [γH(γt), γt]

0, γ ∈
[
γ, γH(γt)

]
(36)

The inequality µ(γ) ≥ 0 follows from their condition (i) in Proposition 1.6

Sufficiency. The concavity of the maximized Hamiltonian requires Λ+κF to be increas-

ing. Their condition (ii) in Proposition 1 guarantees concavity on (γ, γH(γt)); condition (i)

guarantees concavity at γH(γt) if it is interior (by A ≥ 0 if γH(γt) = γ); and wq > 0

guarantees concavity at γ.

2.2 Untruncated problem

Assuming fixed cost σ = 0, the untruncated problem (P) is given by

max
q:Γ→Q

∫
Γ

(w (γ, q(γ))− σ1(q(γ))) dF (γ) subject to: (38)

− γq(γ) + b (q(γ))− σ1(q(γ))−
∫ γ̄

γ

q(γ̃) dγ̃ = Ū , for all γ ∈ Γ (39)

q(γ) decreasing, for all γ ∈ Γ (40)

0 ≤ −γq(γ) + b (q(γ))− σ1(q(γ)), for all γ ∈ Γ, (41)

5In the next subsection, I will propose

Â =
1

γt − b′(qi(γt))

∫ γt

γH(γt)

wq (γ, qi(γt)) dF (γ) ∈ [0, A],

which is also applicable here.
6They define

G (γ|γt) ≡− κF (γt) + κ

[
γ − b′ (qi(γt))

γ − γH(γt)

]
F (γ) +

1

γ − γH(γt)

∫ γ

γH(γt)

wq (γ̃, qi(γt)) f(γ̃)dγ̃ (37)

and assume

Condition (i). G (γ|γt) ≤ G (γt | γt) for all γ ∈ [γH(γt), γt].

Condition (ii). M1(γ) ≡ κF (γ) + wq (γ, qf (γ)) f(γ) is nondecreasing in γ for γ ∈ [γ, γH(γt)).
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where Ū ≡ −γq (γ) + b (q (γ))− σ. Define U(γ) =
∫ γ̄

γ
q(x)dx+ Ū . Rewrite the constraints

as:

U(γ) = −γq(γ) + b(q(γ))− σ1(q(γ)) (42)

U̇ = −q(γ) (43)

q̇ = ν(γ) ≤ 0 (44)

U(γ), q(γ) ≥ 0 (45)

U(γ), q(γ) free. (46)

Set up the Hamiltonian

H = [w(q(γ), γ)− σ1(q(γ))]f(γ) + λ(γ)[−γq(γ) + b(q(γ))− U(γ)− σ1(q(γ))]

−Λ(γ)q(γ) + µ(γ)ν(γ).
(47)

By the Pontryagin’s maximum principle (Hellwig, 2010, Theorem 4.1),

−∂H

∂q
= −wqf + λ(γ − b′(q)) + Λ = µ̇ (48)

−∂H

∂U
= λ = Λ̇ (49)

∂H

∂ν
= µ ≥ 0, µ(γ) = 0 if q is strictly decreasing at γ (50)

Λ(γt) ≤ 0, Λ(γt)U(γt) = 0 (51)

µ(γt) ≤ 0, µ(γt)q(γt) = 0 (52)

Λ(γ) = 0, µ(γ) = 0. (53)

By the jump (switching) condition at γt (Bryson and Ho, 1975, Chapter 3.7) (see also

Clarke, 2013, Chapter 22.5 for the hybrid maximum principle),

Λ(γt−) = Λ(γt+) (54)

H(γt−) = (w(qt, γt)− σ)f(γt)− Λ(γt−)qt = H(γt+) = 0. (55)

For the following price cap (quantity floor) allocation to be optimal,

q⋆t (γ) =


qf (γ); γ ∈ [γ, γH(γt))

qi(γt); γ ∈ [γH(γt), γt]

0; γ ∈ (γt, γ̄]

(56)
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the proposed multipliers are

Λ(γ) =


0; γ = γ

wq (γ, qf (γ)) f(γ); γ ∈
(
γ, γH(γt)

)
Â+ κ (F (γt)− F (γ)) ; γ ∈ [γH(γt), γ̄]

(57)

where κ ≡ infq{wqq/b
′′(q)},7

Â =
1

γt − b′(qi(γt))

∫ γt

γH(γt)

wq (γ, qi(γt)) dF (γ) ≥ 0,

and the cutoff type γt, determined by the jump condition (55), is given by

(w(γt, qi(γt))− σ)f(γt) = Âqi(γt) if γt < γ̄t. (58)

In particular, if (w(γt, qi(γt))− σ)f(γt)− Âqi(γt) > 0, the cutoff type is γt = γ̄.

µ(γ) =


−
∫ γ

γt
wq(γ̃, 0)f(γ̃) dγ̃ − κγ(F (γ)− F (γt)) + (γ − γt)Â ≥ 0, γ ∈ [γt, γ̄]∫ γt

γ
wq(γ̃, qi(γt))f(γ̃) dγ̃ + κ(γ − b′(qi(γt)))(F (γt)− F (γ))− (γt − γ)Â ≥ 0, γ ∈ [γH(γt), γt]

0, γ ∈
[
γ, γH(γt)

]
(59)

The inequality µ(γ) ≥ 0 requires conditions analogous to their condition (i) in Proposi-

tion 1.

2.3 Weaker Conditions

Define

s(γ|q) = wq(γ, q)f(γ) + κf(γ)(γ − b′(q)) + κ(F (γ)− F (γt)) (60)

and, slightly abusing notations,

s(γ) = s(γ|q∗) =

wq(γ, 0)f(γ) + κf(γ)(γ − b′(0)) + κ(F (γ)− F (γt)), if γ ∈ (γt, γ̄]

wq(γ, qi(γt))f(γ) + κf(γ)(γ − b′(qi(γt))) + κ(F (γ)− F (γt)), if γ ∈ [b′(qi(γt)), γt)

(61)
7By convention, F (γ) = 0 for all γ ≤ γ.
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and S(γ) =
∫ γ

γ
s(γ̃) dγ̃. Define

L(γ|γt) =
S(γt)− S(γ)

γt − γ
=

1

γt − γ

∫ γt

γ

s(γ̃) dγ̃ (62)

Equivalently,

L(γ|γt) =


1

γ−γt

[∫ γ

γt
wq(γ̃, 0)f(γ̃) dγ̃ + κ(γ − b′(0))(F (γ)− F (γt))

]
, if γ ∈ (γt, γ̄]

1
γt−γ

[∫ γt
γ

wq(γ̃, qi(γt))f(γ̃) dγ̃ + κ(γ − b′(qi(γt)))(F (γt)− F (γ))
]
, if γ ∈ [b′(qi(γt)), γt).

In particular, the multiplier Â = L(b′(qi(γt))|γt), while the multiplier originally proposed

by AB is A ≡ G(γt|γt) = L(γH(γt)|γt). Because γH(γt) = max{b′(qi(γt)), γ}, we have

L(b′(qi(γt))|γt) ≥ L(γH(γt)|γt), where the equality holds if and only if b′(qi(γt)) ≥ γ̄ (so that

b′(qi(γt)) = γH).

Lemma 1. L(γt+|γt) ≥ L(γt−|γt) for all γt ∈ (γ, γ̄). The equality holds if and only if

wqq(q, γt) + κb′′(q) = 0 for almost every q ∈ (0, qi(γt)).

Now I propose two weaker conditions on L(γ|γt) that support both the pooling and

the exclusion region, respectively.

Condition (i’). L(γ|γt) ≥ L(b′(qi(γt))|γt) = Â for all γ ∈ [γH(γt), γt).

Condition (iii). L(γ|γt) ≤ L(b′(qi(γt))|γt) = Â for all γ ∈ (γt, γ̄].

Graphical interpretations. Graphically, the conditions mean the line ℓ connecting

γt and b′(qi(γt)) on S(γ) (which has a slope of L(b′(qi(γt))|γt) = Â) lies below S for all

γ ∈ [γH(γt), γ̄]. In other words, ℓ is the supporting hyperplane (line) of the epigraph of

S(γ) on γ ∈ [γH(γt), γ̄] containing γt. As noted in Observation 1, if γt < γ̄, Lemma 1

implies that ℓ must be tangent to S(γ) at γt.

Observation 1. If γt < γ̄, then conditions (i’) and (iii) imply L(γt+|γt) ≤ L(γt−|γt).
Therefore, by Lemma 1, it must be L(γt+|γt) = L(γt−|γt) = Â.

The two conditions can be combined into a single condition that involves s(γ):

Condition (I).
∫ γ

γt
s(γ) dγ ≤ Â · (γ − γt) for all γ ∈ [γH(γt), γ̄).

If γt < γ̄, it becomes:∫ γ

γt
s(γ̃) dγ̃ ≤ s(γt)(γ − γt) for all γ ∈ [γH(γt), γ̄), with equality at γ = b′(qi(γt)).
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Condition (ii) in AB is still required to guarantee concavity.

Condition (ii). κF (γ) + wq (γ, qf (γ)) f(γ) is nondecreasing in γ for γ ∈ [γ, γH(γt)).

Proposition 1. If conditions (i’), (ii) and (iii) hold at some γt ∈ [γ, γ̄], then the price cap

allocation with cutoff γt is optimal.

Remark 1. If conditions (i’) and (iii) hold at some γt ∈ [γ, γ̄] such that b′(qi(γt)) ≤ γ, a

bang-bang allocation where the firm either shuts down or sets the price at the price

cap (or take-it-or-leave-it offers where the firm either accepts the fixed price set by the

regulator or shuts down) is optimal.

It is convenient to extend s(γ) to γ ∈ [b′(qi(γt)), γ̄]. Because γH(γt) = max{b′(qi(γt)), γ},

if b′(qi(γt)) ≥ γ, then γH(γt) = b′(qi(γt)); otherwise, γH(γt) = γ.

s(γ) = s(γ|q∗) =


wq(γ, 0)f(γ) + κf(γ)(γ − b′(0)) + κ(F (γ)− F (γt)), if γ ∈ (γt, γ̄]

wq(γ, qi(γt))f(γ) + κf(γ)(γ − b′(qi(γt))) + κ(F (γ)− F (γt)), if γ ∈ [b′(qi(γt)), γt)

wq (γ, qf (γ)) f(γ) + κ(F (γ)− F (γt)), if γ ∈ [γ, b′(qi(γt)))

(63)

Thus, condition (ii) is equivalent to s(γ) is nondecreasing on [γ, b′(qi(γt))). Hence, graph-

ically, conditions (i’), (ii) and (iii) imply the smallest convex function that lies above S

is

convS =

S, if γ ∈ [γ, b′(qi(γt))),

ℓ, if γ ∈ [b′(qi(γt)), γ̄],

where ℓ is the supporting line of S containing γt.

2.4 Linear delegation

In the “linear delegation” case w(γ, q) = αb(q)− d(γ)q +C(γ) (see Kolotilin and Zapechel-

nyuk, 2019), the conditions are also necessary.

Proposition 2. If wqq(q, θ)/b
′′(q) = κ is constant, the conditions in Proposition 1 are also

necessary.

In the linear delegation case, we have

s(γ) = (αγ − d(γ))f(γ) + α(F (γ)− F (γt)) (64)

Corollary 2.1. Assume w(γ, q) = αb(q) − d(γ)q + C(γ). Then, the price cap allocation is

optimal if s(γ) is unimodal. In particular,
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• If s(γ) is increasing, no exclusion (and flexible pricing below the price cap) is optimal;

• If s(γ) is decreasing, a bang-bang allocation where the firm either shuts down or sets

the price at the price cap (or take-it-or-leave-it offers where the firm either accepts

the fixed price set by the regulator or shuts down) is optimal.

Corollary 2.2. The bang-bang solution (or take-it-or-leave-it offer) is optimal if and only

if condition (I) is satisfied for some γt such that b′(qi(γt)) ≤ γ.

Corollary 2.3. Assume w(γ, q) = b(q)/2 + (1/2 − γ)q. Then, the price cap allocation is

optimal if f(γ) is unimodal. No exclusion is optimal if f(γ) is increasing. The bang-bang

solution (or take-it-or-leave-it offer) is optimal if f(γ) is decreasing.

Proof sketch. When w(γ, q) = b(q)/2+ (1/2− γ)q, we have s(γ) = (1− γ)f(γ)/2+ (F (γ)−
F (γt))/2. Thus, s′(γ) = γf ′(γ)/2

sign
= f ′(γ), that is, s(γ) is increasing (decreasing) if and

only if f(γ) is increasing (decreasing).

Example 2.1. Assume b(q) = q(1− q) (so that π(q) = q(1− q)− γq) and w(γ, q) = π(q) +

q2/2, which is equivalent to the setup in Kolotilin and Zapechelnyuk (2019, Section 4.1).

Because w(γ, q) = b(q)/2 + (1/2− γ)q, Corollary 2.3 applies, and the result is consistent

with Kolotilin and Zapechelnyuk (2019, Proposition 1).

2.5 Comparison to Amador and Bagwell (2022)

Because γH(γt) = max{b′(qi(γt)), γ}, the multiplier A = G(γt|γt) = L(γH(γt)|γt) proposed

by AB is greater than Â = L(b′(qi(γt))|γt) that I propose. Thus, condition (i’) is a weaker

condition than their condition (i). Their condition (ii) is still required to guarantee

concavity (see the previous discussions on concavity). Moreover, unlike AB, the two con-

ditions need not hold for all γt ∈ (γ, γ̄]; instead, they need only hold for the endogenously

determined cutoff γt. Condition (iii) is absent in AB because they consider the truncated

problem at the cutoff.

Consequently, this approach yields weaker sufficient conditions, under which exclu-

sion can be optimal even when there is no fixed cost. Furthermore, in contrast to AB,

a bang-bang allocation where the firm either shuts down or sets the price at the price

cap (or take-it-or-leave-it offers where the firm either accepts the fixed price set by the

regulator or shuts down) can also be optimal (e.g., when f(γ) is decreasing). For example,

as shown in Corollary 2.3, if w(γ, q) = b(q)/2 + (1/2− γ)q, the sufficient condition for the

price cap being optimal is a single-peaked density f(γ), while AB requires an increasing

f(γ) (see also Kolotilin and Zapechelnyuk, 2019, Proposition 1).
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