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The (cumulative) Lagrangian methods developed by Amador et al. (2006) have been

widely used to solve the maximization problems in delegation (e.g. Amador and Bagwell,

2013, 2022; Guo, 2016). In this note, I apply Pontryagin’s maximum principles in the

optimal control theory to solve these problems, as a less algebra-intensive alternative.

Moreover, in delegation problems with participation constraints (Amador and Bagwell,

2022), the hybrid maximum principles make it possible to study the global problem

that involves a jump in the allocation at the cutoff type (due to the participation con-

straint), instead of the truncated problem at the cutoff, and thus provide weaker sufficient

conditions that are also necessary.

1 Without participation constraint (Amador and Bagwell,

2013)

I first revisit the delegation problem in Amador and Bagwell (2013) and show that the

Pontryagin approach can be applied to solve the problem. The maximization problem in

Amador and Bagwell (2013) is

max
π:Γ→Π

∫
w(γ, π(γ)) dF (γ) subject to: (1)

γπ(γ) + b(π(γ)) =

∫ γ

γ

π(γ̃)dγ̃ + U for all γ ∈ Γ, (2)

π nondecreasing, (3)
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where U ≡ γπ(γ) + b(π(γ)).1 Define U =
∫ γ

γ
π(γ̃)dγ̃ + U . Rewrite the constraints as

γπ(γ) + b(π(γ)) = U (4)

U̇ = π (5)

π̇ = ν ≥ 0 (6)

U(γ), π(γ) free, (7)

U(γ̄), π(γ̄) free (8)

Set up the Hamiltonian:

H = w(γ, π)f(γ) + λ(γπ(γ) + b(π(γ))− U) + Λπ + µν (9)

where π, U are the state variable and ν is the control variable; Λ is the Hamiltonian

multiplier on U̇ , µ is the Hamiltonian multiplier on q̇, and λ is the Lagrangian multiplier

on γπ(γ) + b(π(γ)) = U .

By the Pontryagin Maximum Principle,

−∂H

∂π
= −(wπf + λ(γ + b′(π)) + Λ) = µ̇ (10)

−∂H

∂U
= λ = Λ̇ (11)

∂H

∂ν
= µ ≤ 0, µν = 0 (12)

Λ(γ) = 0, µ(γ) = 0 (13)

Λ(γ̄) = 0, µ(γ̄) = 0 (14)

For the following interval delegation to be optimal,

π(γ) =


πf (γL); γ ∈ [γ, γL],

πf (γ); γ ∈ (γL, γH),

πf (γH); γ ∈ [γH , γ̄]

(15)

1Note that the standard method is not applicable because transfers are infeasible.
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the proposed multipliers are

Λ(γ) =


κ(1− F (γ)), γ ∈ [γH , γ̄] ,

−wπ (γ, πf (γ)) f(γ), γ ∈ (γL, γH) ,

−κF (γ), γ ∈
[
γ, γL

] (16)

µ(γ) =


∫ γ̄

γ
(wπ(γ̃, πf (γH))f(γ̃)− κγ̃f(γ̃) + κ(1− F (γ̃))) dγ̃ ≤ 0, γ ∈ [γH , γ̄] ,

0, γ ∈ (γL, γH) ,

−
∫ γ

γ
(wπ(γ̃, πf (γL))f(γ̃)− κγ̃f(γ̃) + κF (γ̃)) dγ̃ ≤ 0, γ ∈

[
γ, γL

] (17)

The inequality µ(γ) ≤ 0 follows from their assumption (c2) [resp. (c3)] if γH [resp. γL] is

interior. If γH or γL is at the boundary, the corresponding inequality is satisfied trivially.

Sufficiency. By Kamien and Schwartz (1971), the sufficient condition is that the max-

imized Hamiltonian H̄(π, U,Λ, µ, λ) ≡ maxν H(π, U, ν,Λ, µ, λ) is concave in (π, U) for

given (Λ, µ, λ), which requires wππf + λb′′(π) ≤ 0. Following the definition of κ =

infπ,γ{wππ/b
′′(π)}, concavity is satisfied ifΛ+κF is increasing. Therefore, their assumption

(c1): κF (γ)− wπ (γ, πf (γ)) f(γ) is nondecreasing for all γ ∈ [γL, γH ] guarantees concavity

on (γL, γH), and (c2’) and (c3’) guarantees increasing at γ and γ̄, respectively (if γH or γL
are at the boundary).

2 With participation constraint (Amador and Bagwell, 2022)

Amador and Bagwell (2022, henceforth AB) add a participation constraint to the maxi-

mization program, which makes the problem trickier because the state variable q (i.e., π

in Amador and Bagwell, 2013) can have jumps at the cutoff type γt. Therefore, they study

the truncated problem at the cutoff instead. Nevertheless, the untruncated problem can

still be solved by optimal control by invoking the maximum principle in Hellwig (2010,

Theorem 4.1) for the conditions of the Hamiltonian multiplier on q̇ at discontinuities of

the increasing q and the hybrid maximum principle in Bryson and Ho (1969, Chapter 3.7)

for the jump (switching) conditions at γt (see also Clarke, 2013, Chapter 22.5).
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2.1 The truncated problem in Amador and Bagwell (2022)

Amador and Bagwell (2022) study the following truncated problem (Pt) at the cutoff

type γt. Before applying the hybrid maximum principle to the untruncated problem, I

replicate their result for the truncated problem.

max
qt:Γt(γt)→Q

∫
Γt(γt)

(w (γ, qt(γ))− σ) dF (γ) subject to: (18)

− γqt(γ) + b (qt(γ))− σ −
∫ γt

γ

qt(γ̃)dγ̃ = Ū , for all γ ∈ Γt(γt) (19)

qt(γ) decreasing, for all γ ∈ Γt(γt) (20)

0 ≤ −γqt(γ) + b (qt(γ))− σ, for all γ ∈ Γt(γt), (21)

where Ū ≡ −γtqt(γt)+ b (qt(γt))−σ. Define U(γ) =
∫ γt
γ

q(x)dx+ Ū . Rewrite the constraints

as:2

U(γ) = −γqt(γ) + b(qt(γ))− σ (22)

U̇ = −qt(γ) (23)

q̇t = ν(γ) ≤ 0 (24)

U(γt), qt(γt) ≥ 0 (25)

U(γ), qt(γ) free. (26)

Set up the Hamiltonian

H = [w(qt(γ), γ)− σ]f(γ) + λ(γ)[−γqt(γ) + b(qt(γ))− U(γ)− σ]− Λ(γ)qt(γ) + µ(γ)ν(γ)

(27)

where U, q are state variables and ν is the control variable; Λ is Hamiltonian multiplier on

U̇ and µ is Hamiltonian multiplier on q̇; λ is the Lagrangian multiplier on U = −γqt+ b(qt).

2(IR) is not explicitly written because it is implied by U(γt), qt(γt) ≥ 0 and U̇ = −qt(γ).
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By the Pontryagin Maximum Principle,

−∂H

∂q
= −wqf + λ(γ − b′(q)) + Λ = µ̇ (28)

−∂H

∂U
= λ = Λ̇ (29)

∂H

∂ν
= µ ≥ 0, µν = 0 (30)

Λ(γt) ≤ 0, Λ(γt)U(γt) = 0 (31)

µ(γt) ≤ 0, µ(γt)q(γt) = 0 (32)

Λ(γ) = 0, µ(γ) = 0. (33)

For the following price cap (quantity floor) allocation to be optimal,

q⋆t (γ | γt) =

qf (γ); γ ∈ [γ, γH(γt))

qi(γt); γ ∈ [γH(γt), γt]
(34)

the proposed multipliers are

Λ(γ) =


0; γ = γ

wq (γ, qf (γ)) f(γ); γ ∈
(
γ, γH(γt)

)
A+ κ (F (γt)− F (γ)) ; γ ∈ [γH(γt), γt]

(35)

where κ ≡ infq{wqq/b
′′(q)},

A =
1

γt − γH(γt)

[∫ γt

γH(γt)

wq (γ, qi(γt)) f(γ)dγ + κ (γH(γt)− b′ (qi(γt)))F (γt)

]
≥ 0

as proposed by AB.3

µ(γ) =


∫ γt
γ

wq(γ, qi(γt))f(γ) dγ + κ(γ − b′(qi(γt)))(F (γt)− F (γ))− (γt − γ)A ≥ 0, γ ∈ [γH(γt), γt]

0, γ ∈
[
γ, γH(γt)

]
(36)

3In the next subsection, I will propose

Â =
1

γt − b′(qi(γt))

∫ γt

γH(γt)

wq (γ, qi(γt)) dF (γ) ∈ [0, A],

which is also applicable here.
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The inequality µ(γ) ≥ 0 follows from their condition (i) in Proposition 1.4

Sufficiency. Concavity of the maximized Hamiltonian requires Λ + κF to be increasing.

Their condition (ii) in Proposition 1 guarantees concavity on (γ, γH(γt)); condition (i)

guarantees concavity at γH(γt) if it is interior (by A ≥ 0 if γH(γt) = γ); and wq > 0

guarantees concavity at γ.

2.2 Untruncated problem

Assuming fixed cost σ = 0, the untruncated problem (P) is given by

max
q:Γ→Q

∫
Γ

(w (γ, q(γ))− σ1(q(γ))) dF (γ) subject to: (38)

− γq(γ) + b (q(γ))− σ1(q(γ))−
∫ γ̄

γ

q(γ̃) dγ̃ = Ū , for all γ ∈ Γ (39)

q(γ) decreasing, for all γ ∈ Γ (40)

0 ≤ −γq(γ) + b (q(γ))− σ1(q(γ)), for all γ ∈ Γ, (41)

where Ū ≡ −γq (γ) + b (q (γ))− σ. Define U(γ) =
∫ γ̄

γ
q(x)dx+ Ū . Rewrite the constraints

as:

U(γ) = −γq(γ) + b(q(γ))− σ1(q(γ)) (42)

U̇ = −q(γ) (43)

q̇ = ν(γ) ≤ 0 (44)

U(γ), q(γ) ≥ 0 (45)

U(γ), q(γ) free. (46)

4They define

G (γ|γt) ≡− κF (γt) + κ

[
γ − b′ (qi(γt))

γ − γH(γt)

]
F (γ) +

1

γ − γH(γt)

∫ γ

γH(γt)

wq (γ̃, qi(γt)) f(γ̃)dγ̃ (37)

and assume

Condition (i). G (γ|γt) ≤ G (γt | γt) for all γ ∈ [γH(γt), γt].

Condition (ii). M1(γ) ≡ κF (γ) + wq (γ, qf (γ)) f(γ) is nondecreasing in γ for γ ∈ [γ, γH(γt)).
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Set up the Hamiltonian

H = [w(q(γ), γ)− σ1(q(γ))]f(γ) + λ(γ)[−γq(γ) + b(q(γ))− U(γ)− σ1(q(γ))]

−Λ(γ)q(γ) + µ(γ)ν(γ).
(47)

By the Pontryagin Maximum Principle (Hellwig, 2010, Theorem 4.1),

−∂H

∂q
= −wqf + λ(γ − b′(q)) + Λ = µ̇ (48)

−∂H

∂U
= λ = Λ̇ (49)

∂H

∂ν
= µ ≥ 0, µ(γ) = 0 if q is strictly decreasing at γ (50)

Λ(γt) ≤ 0, Λ(γt)U(γt) = 0 (51)

µ(γt) ≤ 0, µ(γt)q(γt) = 0 (52)

Λ(γ) = 0, µ(γ) = 0. (53)

By the jump (switching) condition at γt (Bryson and Ho, 1969, Chapter 3.7) (see also

Clarke, 2013, Chapter 22.5 for the hybrid maximum principle),

Λ(γ−
t ) = Λ(γ+

t ) (54)

H(γ−
t ) = (w(qt, γt)− σ)f(γt)− Λ(γ−

t )qt = H(γ+
t ) = 0. (55)

For the following price cap (quantity floor) allocation to be optimal,

q⋆t (γ) =


qf (γ); γ ∈ [γ, γH(γt))

qi(γt); γ ∈ [γH(γt), γt]

0; γ ∈ (γt, γ̄]

(56)

the proposed multipliers are

Λ(γ) =


0; γ = γ

wq (γ, qf (γ)) f(γ); γ ∈
(
γ, γH(γt)

)
Â+ κ (F (γt)− F (γ)) ; γ ∈ [γH(γt), γ̄]

(57)
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where κ ≡ infq{wqq/b
′′(q)},5

Â =
1

γt − b′(qi(γt))

∫ γt

γH(γt)

wq (γ, qi(γt)) dF (γ) ≥ 0,

and the cutoff type γt, determined by the jump condition (55), is given by

(w(γt, qi(γt))−σ)f(γt)− Âqi(γt) ≥ 0, [(w(γt, qi(γt))−σ)f(γt)− Âqi(γt)](γ̄−γt) = 0. (58)

In particular, if (w(γt, qi(γt))− σ)f(γt)− Âqi(γt) > 0, the cutoff type is γt = γ̄.

µ(γ) =


−
∫ γ

γt
wq(γ̃, 0)f(γ̃) dγ̃ − κγ(F (γ)− F (γt)) + (γ − γt)Â ≥ 0, γ ∈ [γt, γ̄]∫ γt

γ
wq(γ̃, qi(γt))f(γ̃) dγ̃ + κ(γ − b′(qi(γt)))(F (γt)− F (γ))− (γt − γ)Â ≥ 0, γ ∈ [γH(γt), γt]

0, γ ∈
[
γ, γH(γt)

]
(59)

The inequality µ(γ) ≥ 0 requires conditions analogous to their condition (i) in Proposi-

tion 1.

New conditions. Define

L(γ|γt) =
1

γt − γ

∫ γt

γ

s(γ̃) dγ̃ ≡ S(γt)− S(γ)

γt − γ
(60)

where

s(γ) =

wq(γ, 0)f(γ) + κf(γ)γ + κ(F (γ)− F (γt)), if γ ∈ (γt, γ̄]

wq(γ, qi(γt))f(γ) + κf(γ)(γ − b′(qi(γt))) + κ(F (γ)− F (γt)), if γ ∈ [b′(qi(γt)), γt)

(61)

and S(γ) =
∫ γ

γ
s(γ̃) dγ̃. Equivalently,

L(γ|γt) =


1

γ−γt

[∫ γ

γt
wq(γ̃, 0)f(γ̃) dγ̃ + κγ(F (γ)− F (γt))

]
, if γ ∈ (γt, γ̄]

1
γt−γ

[∫ γt
γ

wq(γ̃, qi(γt))f(γ̃) dγ̃ + κ(γ − b′(qi(γt)))(F (γt)− F (γ))
]
, if γ ∈ [b′(qi(γt)), γt).

In particular, L(b′(qi(γt))|γt) = Â, and L(γH(γt)|γt) ≥ G(γt|γt) ≡ A as originally proposed

by AB.

5By convention, F (γ) = 0 for all γ ≤ γ.
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Lemma 1. L(γ+
t |γt) ≥ L(γ−

t |γt) for all γt ∈ (γ, γ̄). The equality holds if and only if

wqq(q, γt) + κb′′(q) = 0 for almost every q ∈ (0, qi(γt)).

Now I propose two conditions on L(γ|γt) that support both the pooling and the

exclusion region, respectively.

Condition (i’). L(γ|γt) ≥ L(b′(qi(γt))|γt) = Â for all γ ∈ [γH(γt), γt).

Condition (iii). L(γ|γt) ≤ L(b′(qi(γt))|γt) = Â for all γ ∈ (γt, γ̄].

Graphical interpretations. Graphically, the conditions mean the line ℓ connecting γt

and b′(qi(γt)) on S(θ) (which has a slope of L(b′(qi(γt))|γt) = Â) does not intersect with

S at any γ ∈ (γH(γt), γ̄) other than θt. In other words, k is the supporting hyperplane

(line) of the epigraph of S(γ) on γ ∈ [γH(γt), γ̄] containing γt. As noted in Observation 1,

if γt < γ̄, Lemma 1 implies that ℓ must be tangent to S(γ) at γt.

Observation 1. If γt < γ̄, then conditions (i’) and (iii) imply L(γ+
t |γt) ≤ L(γ−

t |γt). There-

fore, by Lemma 1, it must be L(γ+
t |γt) = L(γ−

t |γt) = Â.

The two conditions can be combined into a single condition that involves s(γ):

Condition (I).
∫ γ

γt
s(γ) dγ ≤ Â · (γ − γt) for all γ ∈ [γH(γt), γ̄).

If γt < γ̄, it becomes
∫ γ

γt
s(γ̃) dγ̃ ≤ s(γt)(γ − γt) for all γ ∈ [γH(γt), γ̄).

Proposition 1. If conditions (i’), (ii) and (iii) hold at some γt ∈ [γ, γ̄], then the price cap

allocation with cutoff γt is optimal.

Corollary 1.1. If wqq/b
′′(q) = κ is constant for all q, the conditions in Proposition 1 are also

necessary.

This assumption is satisfied by the “linear delegation” case w(γ, q) = a(γ)b(q)− d(γ)q

(see Kolotilin and Zapechelnyuk, 2019).

Corollary 1.2. If w(γ, q) = b(q)/2 − γq, then the price cap allocation is optimal if f is

unimodal. No exclusion is optimal if f is increasing. A bang-bang solution where firms

either exit or set the price at the price cap is optimal if f is decreasing.

The key is that when w(γ, q) = w(γ, q) = b(q)/2 − γq, the function S(γ) is concave

(convex) if and only if F (γ) is concave (convex).
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2.3 Comparison to Amador and Bagwell (2022)

AB propose A = G(γt|γt) = L(γH(γt)|γt), which is greater than L(b′(qi(γt))|γt) = Â that

I propose. Thus, condition (i’) is a weaker condition than their condition (i). Their

condition (ii) is still required to guarantee concavity (see the previous discussions on

concavity). Moreover, unlike AB, the two conditions need not hold for all γt ∈ (γ, γ̄];

instead, they need only hold for the endogenously determined cutoff γt. Condition (iii) is

absent in AB because they consider the truncated problem at the cutoff.

Consequently, this approach yields weaker sufficient conditions, under which exclu-

sion can be optimal even when there is no fixed cost. Furthermore, a bang-bang solution

where firms either exit or set the price at the price cap can also be optimal (e.g., when

f(γ) is decreasing). For example, as shown in Corollary 1.2, if w(γ, q) = b(q)/2− γq, the

sufficient condition for the price cap being optimal is a single-peaked density f(γ), while

AB requires an increasing f(γ) (see also Kolotilin and Zapechelnyuk, 2019, Proposition 1).
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