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Abstract

I study the optimal design of ratings to motivate agent investment in quality when

transfers are unavailable. The principal designs a rating scheme that maps the agent’s

quality to a (possibly stochastic) score. The agent has private information about his

ability, which determines his cost of investment, and chooses the quality level. The

market observes the score and offers a wage equal to the agent’s expected quality. For

example, a school incentivizes learning through a grading policy that discloses the

student’s quality to the job market.

I reduce the principal’s problem to the design of an interim wage function of

quality. When restricted to deterministic ratings, I provide necessary and sufficient

conditions for the optimality of simple pass/fail tests and lower censorship. In partic-

ular, when the principal’s objective is expected quality, pass/fail tests are optimal if

agents’ abilities are concentrated towards the top of the distribution, while pass/lower

censorship is optimal if abilities are concentrated towards the mode. The results

generalize existing results in optimal delegation with voluntary participation, as

pass/fail tests (lower censorship) correspond to take-it-or-leave-it offers (threshold

delegation). Additionally, I provide sufficient conditions for deterministic ratings

to remain optimal when stochastic ratings are allowed. For quality maximization,

pass/fail tests remain optimal if the ability distribution becomes increasingly more

concentrated towards the top.
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1 Introduction

In many economic applications, a principal seeks to motivate agents’ performance or

investment in quality, but monetary transfers between them are prohibited or limited. In

these situations, the principal can instead incentivize agents through a rating scheme

(or disclosure policy) that reveals information about their performance or quality to the

market. When the market rewards agents based on this information, ratings can provide

reputational incentives for agents.

For example, consider a school in which students invest productive efforts to improve

their quality (i.e., human capital). Suppose the school wants to incentivize student in-

vestment to achieve better placement outcomes, maximize tuition fees, or encourage

human capital formation. To maximize its objective, the school designs a grading rule

that provides information about students’ endogenous quality to the job market. Simi-

larly, regulatory certifiers who care about consumer welfare use quality certifications to

motivate firm investment in product quality.1 Employers (e.g., pre-doc positions) may

pay a fixed wage to employees and induce effort through ratings (e.g., recommendation

letters) that disclose information about their performance and inherent abilities to future

employers.2 In these examples, the market pays the agent the expected value for his

endogenous quality (or inherent ability) conditional on the rating result. By contrast,

transfers between the principal and agent contingent on the rating result are infeasible

in practice or prohibited by law—for instance, certification fees are usually required to

be upfront flat fees.3,4

Various rating schemes are used in these environments to motivate agents. A fre-

quently observed scheme is pass/fail tests. Licensing exams, such as bar examinations,

are often pass/fail. Pass/fail is also ubiquitous in product certifications, such as UL Certi-

fications and ISO Certifications. Another prevalent form of test is lower censorship, which

reveals quality if and only if it exceeds a minimum standard. For example, some schools

release precise scores (or class ranks) above a failing grade. In product certifications,

lower censorship is commonly known as quality assurance, which censors low-quality

1Regulatory or NGO certifiers care about overall product quality because of consumer welfare (see
Zapechelnyuk, 2020; Bizzotto and Harstad, 2023) or spillovers of product quality. Journal editors can also
be viewed as certifiers who care about the product (i.e., paper) quality. By contrast, monopoly certifiers
only care about certification fees.

2Future employers may also value past performance per se because of learning by doing.
3Starting from 2008, Wall Street’s three major credit rating agencies will receive upfront fees for reviewing

mortgage-backed securities regardless if they are hired to assign a rating (Graybow and Siew, 2008).
4Such restrictions on transfers can also arise from economic constraints, such as incentive compatibility

or budget balance. For instance, if the certifier can tamper with the rating, then the restriction to a flat
certification fee is required for incentive compatibility of certifiers.
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products that do not meet the standard and prevent them from being sold on the market.

Yet another form is coarse letter grades that consist of multiple minimum standards.

For instance, students who meet the lower standard but not the higher one get a “low-

pass” grade. Alternatively, ratings may involve randomness, such as random inspection

or disclosure of product quality. For example, the certifier may use an algorithm that

determines the probability of checking or disclosing the product quality.

In this paper, I study the optimal design of rating schemes to motivate agent invest-

ment in quality when transfers are unavailable. Instead, the principal designs a rating

scheme (à la Blackwell) that maps the agent’s quality to a (possibly stochastic) score. The

agent has private information about his ability, which determines his cost of investment,

and chooses the quality level. The market observes the score and offers a wage equal to

the agent’s expected quality.

The problem is more challenging than it might appear. At first glance, full revelation

(or full disclosure) of quality might seem to be the most motivating scheme because

any marginal investment in quality will be revealed to the market. This is true for a

utilitarian principal who has the same preference as the agent. However, when the

principal wants to incentivize quality investment, a minimum standard can provide

stronger incentives for some agents, as they need to invest more in quality to separate

themselves from the low levels that fail to meet the standard. Therefore, tests with (one

or more) minimum standards, such as pass/fail and coarse grading, can be optimal.5

Alternatively, stochastic rating schemes can potentially provide stronger incentives for

some types than deterministic rating schemes. As will be seen in the paper, I solve the

problem using optimal control methods.

To characterize the optimal rating scheme, I reduce the rating design problem to

the equivalent problem of designing an incentive-compatible direct mechanism that

consists of a quality function and an interim wage function. The interim wage function

maps the agent’s type to the expected wage he receives from the market in equilibrium.

Because the agent’s wage is offered by the market based on his score and the rating

scheme, the mechanism design problem is subject to a feasibility constraint that the

interim wage must be a mean-preserving spread of the quality in the quantile space.

My first set of results concerns the optimal deterministic rating schemes. A determin-

istic rating scheme either fully reveals quality or pools some qualities to the same score.

In the latter case, among the qualities that are pooled to the same score, only the lowest

5This argument does not hinge on cognitive or technological costs (or constraints) of precise informa-
tion, which are not considered in this paper. These costs and constraints will make pass/fail tests and
coarse grading more likely to be optimal.
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one will be chosen by the agent.6 Thus, the interim wage always equals the quality, as

the market can perfectly infer the agent’s quality from his score. Using optimal control

methods, I provide sufficient conditions for the optimal deterministic rating scheme to

be lower censorship or a simple pass/fail test. The conditions are also necessary if the

principal’s marginal payoff from the agent’s quality is linear in (a transformation of) the

quality.7 In particular, when the principal maximizes expected quality, lower censorship

is optimal if agents’ abilities are concentrated around the mode of the distribution (e.g.,

unimodal density). If abilities are concentrated towards the top (e.g., increasing density),

a pass/fail test maximizes the expected quality. Otherwise, if abilities are concentrated

towards the bottom (e.g., decreasing density), lower censorship with a minimum stan-

dard that every type will meet in equilibrium maximizes the expected quality. Intuitively,

when there are more high types, it is more profitable to set a high minimum standard

to induce higher investment in quality from high types, even if it excludes some low

types. Specifically, the optimal minimum standard is such that passing requires even the

highest type to invest more than he would under full revelation. On the other hand, when

there are more low types, excluding them to incentivize high types becomes unprofitable,

so the optimal minimum standard will allow the lowest type to barely reach it in the

equilibrium.

Beyond lower censorship and pass/fail tests, I solve for the optimal deterministic

ratings for general distributions and preferences. The solution extends the conditions

for lower censorship to accommodate multiple (alternating) pooling and full revela-

tion regions. For example, if the ability density is bimodal,8 the quality-maximizing

deterministic rating can take the form of high-pass/low-pass/fail.

My results also have implications for optimal delegation because the deterministic

rating design problem is equivalent to optimal deterministic delegation with voluntary

participation (see also Zapechelnyuk, 2020). In the delegation problem (à la Holmstrom

(1984)), the principal determines a set of permissible actions and delegates the agent

to choose one from the set (or the outside option). Similarly, in the deterministic rating

design problem, the principal effectively designs a set of undominated qualities for the

agent to choose.9 Thus, pass/fail tests correspond to take-it-or-leave-it offers, while

lower censorship corresponds to threshold delegation. My results generalize existing

6This is no longer the case if agent investment determines quality stochastically.
7This is referred to as “linear delegation” in the delegation literature.
8See, e.g., Carrell et al. (2013) for empirical evidence of bimodal ability distribution in United States Air

Force Academy squadrons.
9To see this, when multiple qualities are pooled to the same score, the lowest quality among them will

strictly dominate others.
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results in the literature on delegation with voluntary participation (Amador and Bagwell,

2022; Kartik, Kleiner and Van Weelden, 2021) by providing necessary and sufficient

conditions for threshold delegation and take-it-or-leave-it offers, while allowing for

general principal preferences that can depend on the agent’s type (i.e., state-dependent).

Analogously, other deterministic rating schemes also have their counterparts in the

delegation problem.

My second set of results considers settings where stochastic rating schemes are al-

lowed. A natural question is whether stochastic ratings can improve on deterministic

ratings. First, I provide sufficient conditions under which deterministic rating schemes

(including lower censorship and pass/fail tests) remain optimal. In the quality maximiza-

tion case, pass/fail tests remain optimal if the ability density is increasing. Second, I also

identify conditions under which stochastic ratings can strictly improve on deterministic

ratings. For example, a noisy test that partially pools low quality with high quality enables

the principal to increase the incentives for low types at the cost of incentives for high

types, which can potentially increase the overall expected quality. This is true when the

ability density has a heavy tail—that is, there are a few very high ability agents.

As an extension, I consider the ability signaling case where the market values the

agent’s exogenous ability instead of endogenous quality. In other words, the agent’s effort

is signaling rather than productive. The rating design problem can also be reduced to

a mechanism design problem subject to a feasibility constraint that the interim wage

must be a mean-preserving spread of the ability in the quantile space. Because ability is

exogenous, the problem is simpler. With linear costs, the quality-maximizing rating is

always deterministic and induces full separation if and only if the ability distribution is

regular in the sense of Myerson (1981).

Methodologically, the paper uses recent advances in optimal control methods to

account for jumps in the optimal quality scheme (Hellwig, 2008, 2010; Clarke, 2013). Be-

cause there are no transfers, the Myersonian approach is not applicable, and neither are

the standard optimal control methods (e.g., Guesnerie and Laffont (1984)) because they

require the quality scheme (i.e., state variable) to be absolutely continuous.10 Thus, I use

the maximum principle formulated by Hellwig (2008, 2010) to account for the monotonic-

ity of the quality function without assuming its absolute continuity. Moreover, because

of voluntary participation, the optimal quality scheme induced by lower censorship and

pass/fail has a jump at the (endogenous) cutoff type. I use the switching condition in the

10With type-contingent transfers, it can be shown that the optimal scheme has no jumps (see, e.g., Mussa
and Rosen (1978) and Kamien and Schwartz (2012, Section 18)), so one can assume absolute continuity
and use its derivative as a control variable.
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hybrid maximum principles (Clarke, 2013; Bryson and Ho, 1975) to account for the jump

at the cutoff.

The paper makes three main contributions to the literature. First, I provide a unified

framework to study the optimal rating scheme to motivate agents, which allows the

principal to have a state-dependent preference and to design stochastic rating schemes,

and in which the agent’s effort can be either productive or signaling. If the principal (e.g.,

school) internalizes part of the agent’s (e.g., student’s) cost, her preference will depend

on the agent’s type. Moreover, the principal may have a state-dependent bliss point and a

quadratic-loss payoff, as is common in the literature (e.g., Alonso and Matouschek (2008)).

Thus, a state-dependent preference is an important consideration. Second, my results

for optimal deterministic ratings have implications for optimal delegation with voluntary

participation. I generalize existing results by providing necessary and sufficient condi-

tions for threshold delegation and take-it-or-leave-it offers, allowing for the optimality

of bang-bang allocations (Cf. Amador and Bagwell, 2022), state-dependent principal

preferences (Cf. Kartik, Kleiner and Van Weelden, 2021), and nonlinear delegation (Cf.

Kolotilin and Zapechelnyuk, 2019). Through the equivalence established by Kolotilin and

Zapechelnyuk (2019) between delegation problems and Bayesian persuasion problems,

the results also contribute to the persuasion literature, especially in the nonlinear case.

Third, I contribute to the growing literature that uses the characterization of the posterior

mean conditional on the agent’s type (see Saeedi and Shourideh, 2020; Doval and Smolin,

2022, 2024). I develop the interim approach by Saeedi and Shourideh (2020), especially

in the ability signaling case, that reduces the rating design problem to the optimization

over interim wage functions rather than Blackwell experiments themselves.

Literature Review. This paper provides a framework that incorporates two strands of

literature on the optimal rating design to motivate agents when a competitive market

pays the expected value. A strand of literature assumes the market values the agent’s

endogenous quality or effort (Albano and Lizzeri, 2001; Saeedi and Shourideh, 2020, 2023;

Zapechelnyuk, 2020; Rodina and Farragut, 2020; Boleslavsky and Kim, 2021). Zapechel-

nyuk (2020) studies the optimal deterministic quality certification to incentivize sellers’

investment in product quality and characterize sufficient conditions for lower censor-

ship and pass/fail certifications. His conditions for pass/fail require small differences

in agents’ abilities.11 Compared to the literature, my conditions for lower censorship

11Rodina and Farragut (2020) also show the effort-maximizing deterministic grading rule (i) has a failing
grade combined with full revelation if the distribution is sufficiently concave, (ii) has two or three letter
grades if the distribution is sufficiently convex, and (iii) has at most three letter grades combined with full
revelation if the distribution is sufficiently single-peaked.
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and pass/fail are less restrictive. I also allow for state-dependent preferences (e.g., the

principal partially internalizes the agent’s cost) and stochastic rating schemes.12

Another strand of literature assumes the market values the exogenous abilities à la

Spence’s (1973) signaling or Holmström’s (1999) career concern model (Dewatripont,

Jewitt and Tirole, 1999; Rayo, 2013; Zubrickas, 2015; Rodina, 2020; Hörner and Lam-

bert, 2021; Onuchic and Ray, 2023). Rayo (2013) and Zubrickas (2015) characterize the

conditions under which the effort-maximizing deterministic rating scheme induces full

separation or pooling of agents.13,14 My results for ability signaling (Section 6) generalize

them by allowing for stochastic ratings and general objective functions.15 More recently,

Onuchic and Ray (2023) assume the market values both inherent ability and learning

effort and characterize conditions under which the optimal deterministic grading scheme

to incentivize learning (and signal student abilities) is lower censorship or full pooling.16

My paper complements theirs by focusing on common priors while allowing for stochas-

tic rating schemes and assuming convex effort costs so that returns to quality investment

alone (without signaling) can still motivate some investment.17

As mentioned above, this paper is also related to the delegation literature with limited

transfers (Holmstrom, 1984; Alonso and Matouschek, 2008) and voluntary participation

(Amador and Bagwell, 2022; Kartik, Kleiner and Van Weelden, 2021). Amador and Bagwell

12Some papers consider stochastic rating schemes with a constant (i.e., noncontingent) transfer (i.e.,
certification fee). Albano and Lizzeri (2001) shows the rating scheme that maximizes certification fees
is stochastic—it reveals quality with some probability and outputs an (almost) uninformative signal
otherwise. Saeedi and Shourideh (2020) extend it to the case where the principal maximizes a weighted
average of the agents’ payoff using the interim approach. Saeedi and Shourideh (2023) assume agent
investment increases quality stochastically. Additionally, Boleslavsky and Kim (2021) consider stochastic
rating schemes without transfers but assume agent investment improves the distribution of his quality.

13In particular, pooling (or coarse grading) can be optimal when the ability distribution is not regular
in the sense of Myerson (1981). Similarly, when in agents care about their relative rankings, Moldovanu
et al. (2007) find coarse partitions can be effort-maximizing if the ability distribution is not regular—in
particular, two categories are optimal if the distribution is sufficiently concave. Dubey and Geanakoplos
(2010) find the optimal grading scheme to motivate students is coarse if their abilities are “disparate”—i.e.,
a higher-ability student can achieve a higher score even when he shirks.

14Some papers also find pass/fail tests or coarse grading to be optimal for reasons other than incentivizing
agents. Harbaugh and Rasmusen (2018) find coarse grading can be more informative to the receiver
because of increased participation. DeMarzo et al. (2019) show there is no benefit for a more precise test
than pass/fail when the agent can choose whether to disclose the test result.

15In a dynamic career concerns model, Hörner and Lambert (2021) show the effort-maximizing rating is
a linear function of past observations.

16This is an application of their more general model, which studies the optimal monotone categorization
of (exogenous) ability to maximize the principal’s expected payment of the market when the market
(receiver) values ability and has different priors from the principal (sender).

17They assume linear effort costs so that returns to quality investment alone does not motivate any
investment (which is a corner solution). If students have common priors, the school effectively maximizes
students’ effort (i.e., endogenous quality) while internalizing a constant fraction of their costs, which is
encompassed in state-dependent preferences.
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(2022) study the problem of regulating a monopolist without transfers and characterize

sufficient conditions for threshold delegation (i.e., price-cap regulation) to be optimal.

Compared to them, my results correspond to necessary and sufficient conditions of price-

cap regulation and take-it-or-leave-it offers, thereby allowing for the optimality of a bang-

bang allocation where the firm either sets the price at the cap or shuts down.18 In contrast

to expertise-based delegation, Kartik et al. (2021) study delegation in veto-bargaining with

an outside option. They assume the principal has a specific state-independent preference

(with a constant bliss point) and identify the necessary and sufficient conditions for the

optimality of interval delegation, including full delegation and no compromise (i.e., take-

it-or-leave-it), among possibly stochastic delegation mechanisms. In comparison, I allow

for general state-dependent preferences, and stochastic rating schemes in my setting are

not equivalent to stochastic delegation mechanisms, despite their equivalence in the

deterministic case.19

The method I use in characterizing optimal deterministic ratings develops the La-

grangian methods in the delegation literature advanced by Amador, Werning and An-

geletos (2006) (see also Amador and Bagwell, 2013, 2022) to account for jumps in the

optimal allocation (particularly due to the participation constraint) using optimal control

tools (Bryson and Ho, 1975; Hellwig, 2008, 2010; Clarke, 2013).20 The method tackles the

delegation problem directly without invoking the equivalence to persuasion.21 Further-

more, my method allows for nonlinear delegation (i.e., the principal’s marginal payoff

is nonlinear in the agent’s action; see Section 4.2.4) and can be extended to stochastic

ratings using the interim wage function and the feasibility condition.22

Outline. The rest of the paper is organized as follows. In Section 2, I introduce the

model and assumptions. In Section 3, I reduce the principal’s problem to the design

of a direct mechanism subject to a feasibility constraint. Section 4 studies optimal

deterministic ratings. In Section 5, I consider optimal general (potentially stochastic)

ratings and also extend the model to allow for a constant testing fee.23 Section 6 explores

the ability signaling case where the market values the agent’s exogenous ability.

18Under their sufficient conditions for price-cap regulation, the bang-bang allocation is never optimal.
See also Halac and Yared (2022) for the optimality of bang-bang solutions.

19Rappoport (2022) studies a delegation problem when agents have career concerns, which is related to
the ability signaling case but different in that the agent prefers to take higher actions than the principal.

20See also Xiao (2023a).
21This is also different from the method used in Kleiner et al. (2021, Section 4.3) for linear delegation.
22As noted above, despite the equivalence to delegation under deterministic ratings, the rating design

problem with stochastic ratings in Section 5 is not equivalent to stochastic delegation.
23In Appendix E, I show that ratings are irrelevant if type-contingent transfers are allowed, and I extend

the model to allow for a constant (i.e., noncontingent) transfer if the agent takes the test.
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2 The Model

2.1 Setup

An agent (he) has a private type θ, which has a continuous distribution F with support

Θ = [θ, θ̄] and continuous density f(θ) > 0. He can choose a quality level q ∈ Q ≡
[0, qmax] at cost c(q, θ), which is twice continuously differentiable and satisfies cq(q, θ) > 0,

cθ(q, θ) < 0, cqq(q, θ) > 0, cqθ(q, θ) < 0 for all q > 0 and θ ∈ Θ. Assume c(0, θ) = cq(0, θ) = 0

for all θ ∈ Θ.

The principal has a utility function given by v(q, θ), which is twice continuously

differentiable and satisfies vqq(q, θ) ≤ 0, v(0, θ) = 0, and vq(0, θ) > 0 for all q ∈ Q and θ ∈ Θ

(see Assumptions 1 for another assumption on vq(q, θ)). The principal does not observe

θ. It does not matter whether the principal observes q as long as the rating takes it as

input. If she observes q, the rating scheme is a disclosure policy that garbles the quality;

otherwise, it is a test that inputs the quality and outputs a score. Assume there are no

transfers between the principal and agent. Instead, the principal can design a rating

(Blackwell experiment) π : Q → ∆(S) to reveal information about the agent’s quality q

and hence type θ to the market and provide reputational incentives.

The market values the agent’s quality q. Assume the market is competitive has a payoff

−(ω − q)2 when she pays a wage ω to an agent of quality q. If the agent takes the test, the

market observes the score s ∈ S and offers a wage ω(s) = E[q|s]. Thus, the agent’s interim

wage, as a function of his quality choice q, is ŵ(q) = Es∼π(q)[ω(s)].24 Hence, if the agent

takes the test, he chooses q ∈ Q to maximize his payoff u(q, θ) = ŵ(q)− c(q, θ). Otherwise,

he can also choose not to take the test, in which case the market observes a null signal

s = ∅ and offers him a wage ω(∅).

See Section 2.3 for a discussion of the model assumptions.

Timing. The timing of the game is as follows.

1. Agents privately learn their types θ ∈ [θ, θ̄].

2. The principal commits to a rating scheme π : Q → ∆(S), which is publicly observed.

3. Agents choose quality q ∈ Q and whether to take the test. If an agent takes the test,

the market observes a signal s drawn from π(q). Otherwise, the market observes a

null signal s = ∅.

24The interim wage is the interim posterior mean of quality. To see this, denote by µs ∈ ∆(Q) the
posterior belief induced by s; then ω(s) = Eµs [q] is the posterior mean and ŵ(q) = Es∼π(q)[Eµs

[q̃]] is the
interim posterior mean.
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4. The market updates her belief of the agent’s quality to µs using Bayes’ rule and sets

the wage equal to the expected value, i.e., ω(s) = E[q|s] ≡ Eµs [q].

Solution Concept. I study Sequential Equilibrium. The results are the same if I use

weak Perfect Bayesian Equilibrium (wPBE) as the solution concept. Because the quality

investment is costly, in any equilibrium, if an agent does not take the test, he must choose

q = 0. Thus, the market must believe he has chosen q = 0 and offer ω(∅) = 0 accordingly.

Lemma 1. In any equilibrium, if an agent does not take the test on the equilibrium path,

then he chooses q = 0, and the market will offer him ω(∅) = 0.

This lemma implies that the agent’s outside option is zero. Moreover, because

vq(0, θ) > 0, the optimal rating scheme will induce ŵ(0) = 0, so that an agent who

chooses q = 0 and takes the test will also gets zero payoff.

2.2 Notation and Assumptions

Assume the cost is multiplicatively separable, that is, slightly abusing the notation,

c(q, θ) = c(q)/θ, where c′(q) > 0, c′′(q) ≥ 0, and c(0) = c′(0) = 0.

Define the agent’s quality choice under full revelation as

qf (θ) = argmax
q∈Q

q − c(q)/θ ⇐⇒ c′(qf (θ)) = θ. (1)

In other words, qf (θ) is the quality level at which the marginal cost c′(q) = θ, so qf =

c′−1|Θ : Θ → Q.

Define the principal-optimal quality as qe(θ) = argmaxq∈Q v(q, θ). I assume that the

agent has a downward bias, i.e., qf (θ) ≤ qe(θ).25

Assumption 1 (Downward bias). vq(qf (θ), θ) ≥ 0 for all θ ∈ [θ, θ̄].

Define the quality choice qi(θ) indifferent to the outside option (zero) by

θqi(θ)− c(qi(θ)) = 0, and qi(θ) ≥ qf (θ). (2)

In other words, qi(θ) is the quality level at which the average cost AC(q) ≡ c(q)/q = θ, so

qi = AC−1|Θ : Θ → Q. By the convexity of c(q) and c(0) = 0, a unique qi(θ) ≥ qf (θ) exists

25When qf (θ) > qe(θ), the principal will use a noisy rating (i.e., a garbling of the fully revealing test such
that w′(θ) < q′(θ)) to implement q < qf (θ).
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for all θ ∈ [θ, θ̄] with equality if and only if θ = 0. In particular, qi(0) = qf (0) = 0. Note that

it is without loss to assume qmax = qi(θ̄) because no types will choose a higher quality.

Define θc(θ) = c′(qi(θ)) as the type that would choose qi(θ) under full revelation.

Note that θc : [θ, θ̄] → [θ,+∞), so it is possible that θc(θ) > θ̄, in which case θc(θ) is a

“hypothetical type” that would choose qi(θ) under full revelation. Whenever θc(θ) ≤ θ̄,

qf (θc(θ)) = qi(θ).

Example 2.1. For quadratic cost c(q) = q2/2, we have qf (θ) = θ, qi(θ) = 2θ, and θc(θ) = 2θ.

Example 2.2. Assume v(q, θ) = β(θ)q − αc(q) with β(θ) > 0 and α ≥ 0. Assumption 1

requires β(θ) ≥ αθ. The quality maximization case v(q, θ) = q satisfies the assumption.

2.3 Discussion of Assumptions

The market values quality. I assume the market values the (endogenous) quality q

and not directly on the (exogenous) ability θ to shut down signaling.26 This captures

the cases in (i) the school example when learning is productive rather than signaling,

(ii) the product certification example when the consumer values the product quality,

and (iii) the employer-employee example when the performance accumulates human

capital (learning by doing) or skills valued by the future employer. In Section 6, I assume

the market values the ability θ à la Spence’s (1973) signaling model.27 In other words,

the agent’s effort is signaling rather than productive. That case will be simpler because

abilities are exogenous.

The misalignment of incentives. I assume every agent has a downward bias, i.e.,

vq(qf (θ), θ) ≥ 0 for all θ. This is the case, for example, when the principal internal-

izes only a fraction α ∈ [0, 1] of the agent’s cost, i.e., v(q, θ) = q − αc(q, θ), a special case

being v(q, θ) = q, where the principal’s objective is expected quality. Below, I provide

several strands of micro-foundation of this misalignment.

First, a rational principal might not care about the costs. For example, the employer

only wants to induce higher effort or output q from employees. A bureaucrat may just

maximize output q and not care as much about the costs. The principal may also have an

ideal q higher than the agent’s desired q, independent of the agents types (Kartik et al.,

2021).
26The market value can be easily generalized to a function of q if the cost function is adjusted accordingly.
27Rayo (2013) and Zubrickas (2015) study this case with v(q, θ) = q and restrict attention to deterministic

ratings, while I allow for general v(q, θ) and stochastic ratings.
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Second, it can be due to a benevolent principal because social cost of investment in

quality can be lower than the private cost due to network effects. Equivalently, agent

investment can also have some social benefits or spillovers in addition to the private

benefits. For example, the school can be solely concerned with average human capital

accumulation E[q] (Zubrickas, 2015) or put more weight on q relative to the agent’s cost

than the agent does. Similarly, The certifier can also be concerned with the overall quality

of the products in the market. When the (government or NGO) certifier maximizes

a weighted sum of firms’ profit and average quality (Bizzotto and Harstad, 2023), the

principal’s objective is E[αq(θ) + (1− α)U(θ)] = E[q(θ)− αc(q(θ), θ)].28

Third, it can arise from the agent’s behavioral bias. The student may overestimate his

cost or disutility of learning, possibly due to procrastination (DellaVigna and Malmendier,

2004).

Lastly, this misalignment can result from more complicated models. For example, the

school maximizes the student’s placement outcome (i.e., expected wage) for reputational

reasons, which is equal to the expected quality (i.e., E[w(θ)] = E[q(θ)]) in this model.

In Onuchic and Ray (2023, Section 4), the school maximizes tuition fee charged at the

ex-ante stage (before students learn their types), which is equal to the students’ expected

payoff E[q(θ)−αc(q(θ), θ)], as their parents who pay the tuition internalize only a fraction

α of the cost.29 Moreover, in Zapechelnyuk (2020), the regulatory certifier maximizes

consumer surplus, which is equivalent to maximizing average quality E[q(θ)] under some

assumptions.30

The role of (no) transfers. I rule out transfers to focus on the role of ratings in provid-

ing incentives. With contingent transfers t(θ), the design of ratings no longer matters

because t(θ) can provide the same incentives in place of w(θ) through redistribution (see

Appendix E.1).31 I also consider a constant (i.e., noncontingent) testing fee that affects

the optimal rating design through the agent’s participation constraint for deterministic

ratings (Appendix E.2) and stochastic ratings (Section 5.4 and Appendix E.3), as well as

28To see this, E[αq(θ) + (1− α)U(θ)] = E[αq(θ) + (1− α)(w(θ)− c(q(θ), θ))] = E[q(θ)− αc(q(θ), θ)].
29This is distinct from a constant testing fee mentioned above at the interim stage (after agents observe

their type) because agents have no information rent.
30Specifically, he assumes the consumer has an outside option that follows the power distribution and

buy the product if the price is lower than the outside option, which micro-founds a downward sloping
demand. Given the demand function, the firm (i.e., agent) with private information about its cost (i.e.,
type) sets a price to maximize its profit. In this case, consumer surplus equals the expected quality after
some transformation.

31On the technical side, with contingent transfers t(θ) as a control variable, there are no longer pure state
constraints, and the maximized Hamiltonian is strictly concave in q, which implies the state variable q(θ)
has no jumps (Kamien and Schwartz, 2012).
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for the alternative case à la Spence (1973) (Section 6.3).

Multiplicatively separable cost. This assumption rules out another commonly used

cost function: c(q, θ) = c(q − θ), that is, a type-θ agent can invest effort e ≥ 0 at the

cost c(e) to achieve quality q = θ + e,32 which I explore in Appendix F. When the market

values quality q (type θ), this effort is productive (signaling). By contrast, in the main

specification c(q, θ) = c(q)/θ, the effort is implicit, which can be interpreted as identical

to the quality q. In Appendix F, I show that the results can extend to cost function

c(q, θ) = c(q − θ) and more general cost functions.

3 Preliminaries

3.1 Revelation Principle and Feasibility

The rating scheme can be viewed as an implementation of a direct mechanism, which

does not require the agent’s quality q to be observable by the principal, as long as it is

taken as input by the rating scheme π. To see this, when the principal commits to a rating

scheme π : Q → ∆(S), the agent obtains a signal s drawn from π(q) when he chooses

quality q ∈ Q and participates in the rating scheme. Alternatively, the principal can offer

a direct mechanism (q(θ), s(θ)). If the agent accepts this mechanism, he reports his type

θ, and is then required to choose quality level q(θ) and receives a (possibly stochastic)

score s(θ) drawn from π(q(θ)). By the revelation principle and the taxation principle,

these two mechanisms are equivalent—i.e., choosing q is equivalent to reporting θ.33

Formally, say a quality function q : θ → Q is implementable by a rating scheme

π : Q → ∆(S) if π and q satisfy the incentive compatibility constraint

ŵ(q)− c(q, θ) ≥ ŵ(q′)− c(q′, θ) for all θ ∈ [θ, θ̄] and q′ ∈ Q, (3)

where ŵ(q) = Es∼π(q)[ω(s)] is the interim wage induced by π and ω(s) = E[q|s].
Instead of optimizing over Blackwell experiments π : Q → ∆(S), it is easier to work

with the interim wage ŵ : Q → R+ induced by π, which can be viewed as a “quasi-transfer”

scheme offered by the market equal to its expectation of q based on the score and the

rating scheme. Say a quality function q(θ) is implementable by ŵ(q) if they satisfy the

32This cost function has been used in, among others, Laffont and Tirole (1993); Augias and Perez-Richet
(2023); Perez-Richet and Skreta (2022).

33See also Fudenberg and Tirole (1991, Remark on pp. 257).
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incentive compatibility constraint (3). Hence, q(θ) is implementable by π(q) if and only if

it is implementable by ŵ(q) = Es∼π(q)[E[q̃|s]].
Because the signal s(θ) only affects the agent through the expected wage, I shall focus

on a direct mechanism (q(θ), w(θ)) consisting of a quality function q(θ) and the interim

wage function w(θ) = ŵ(q(θ)).

Definition 1. A direct mechanism (q(θ), w(θ)) consists of a quality function q : [θ, θ̄] → Q

and an interim wage function w ≡ ŵ ◦ q : [θ, θ̄] → R+.

Unlike a transfer function between the principal and agent, the interim wage function

w(θ) is offered by the market based on the agent’s score and the rating scheme. This calls

for the following definition of feasibility.

Definition 2. A direct mechanism (q(θ), w(θ)) is feasible if there exists a rating scheme

π : Q → ∆(S) such that w(θ) = ŵ(q(θ)) ≡ Es∼π(q(θ))[E[q|s]].

Analogous to the standard definition, say a quality function q : θ → Q is imple-

mentable by a direct mechanism (q(θ), w(θ)) if they satisfy the incentive compatibility

constraint

w(θ)− c(q(θ), θ) ≥ w(θ′)− c(q(θ′), θ) for all θ, θ′ ∈ [θ, θ̄]. (4)

The following lemma establishes the equivalence between the direct mechanism and

the rating mechanism in terms of implementability and allows one to focus on feasible

direct mechanisms (q(θ), w(θ)).

Lemma 2. An allocation q(θ) is implementable by the rating scheme π(q) if and only if it is

implementable by a feasible direct mechanism (q(θ), w(θ)).34

Proof. ( =⇒ ) is by the revelation principle and definition of feasibility. ( ⇐= ) is similar

to the taxation principle. Construct a π(q) that penalizes off-path deviations to q that no

types choose in the direct mechanism, so that they will never be chosen in the rating

scheme π(q) either.

Remark 1. The lemma implies that eliciting the agent’s information through a menu

of tests Π ≡ {π : Q → ∆(S)} has no value. To see this, when a menu of tests is offered,

consider a direct mechanism consisting of q : [θ, θ̄] → Q and π̂ : [θ, θ̄] → Π, along with

the induced interim wage w(θ) = Es∼π̂(θ)(q(θ))[E[q|s]]. The same w(θ) and q(θ) can be

induced by a rating scheme such that π(q(θ)) = π̂(θ)(q(θ)) for all θ ∈ [θ, θ̄], so it can also

be implemented by a single test π.

34The implementation result is reminiscent of the Laffont-Tirole cost reimbursement model (Laffont
and Tirole, 1993, Chapter 1), where the optimal allocation implemented by a direct mechanism (analogous
to (q(θ), w(θ))) can also be implementable by a payment scheme (analogous to ŵ(q)), and vice versa.
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By the standard argument, incentive compatibility of a direct mechanism (q(θ), w(θ))

is equivalent to the monotonicity of q(θ) and the envelope condition

w(θ)− c(q(θ), θ) = −
∫ θ

θ

cθ(q(x), x)dx+ U (5)

whereU = w(θ)−c(q(θ), θ) (see Lemma B.1). However, an incentive-compatible (q(θ), w(θ))

is not necessarily feasible because it may be unable to be induced by a rating scheme.

The following proposition characterizes the necessary and sufficient condition for the

feasibility of an incentive-compatible direct mechanism.

Proposition 1 (Saeedi and Shourideh, 2020, Proposition 1 and Theorem 135). An incentive-

compatible direct mechanism (q(θ), w(θ)) is feasible if and only ifw(θ) is a mean-preserving

spread of v(q(θ)) in the quantile space, that is,

(i)
∫ θ

θ
w(θ′) dF (θ′) ≥

∫ θ

θ
q(θ′) dF (θ′) for all θ ∈ [θ, θ̄] (MPS),

(ii)
∫ θ̄

θ
w(θ) dF (θ) =

∫ θ̄

θ
q(θ) dF (θ) (Bayesian plausibility, henceforth BP).

The proposition is reminiscent of the symmetric version of Border’s theorem (i.e.,

Maskin-Riley condition) in reduced-form mechanism design (Maskin and Riley, 1984;

Border, 1991).36 Analogously, it allows us to optimize over direct mechanisms (q(θ), w(θ))

(or interim wages ŵ(q)) induced by experiments rather than experiments themselves.

Corollary 1.1. If an incentive-compatible direct mechanism (q(θ), w(θ)) satisfies w′(θ) ≤
q′(θ) on [θ, θ̄], then it is feasible if and only if it satisfies (BP).

Proof sketch. If w′(θ) ≤ q′(θ) on [θ, θ̄], then (BP) implies (MPS) because w single-crosses q

from above.

Because incentive-compatibility implies w′(θ) = cq(q(θ), θ)q
′(θ), the corollary implies

that if an incentive-compatible direct mechanism (q(θ), w(θ)) satisfies cq(q(θ), θ) ≤ 1,

then it is feasible if and only if it satisfies (BP).

Example 3.1. If w′(θ) ≤ q′(θ) on [θ, θ̄], one can construct a rating that induces (q(θ), w(θ))

à la Albano and Lizzeri (2001). Define q◦ as a fixed point of ŵ(q) (which exists because

35See also Rodina (2020, Lemma 1 and Lemma 2) and Saeedi and Shourideh (2023, Lemma 1 and
Theorem 1) for a characterization theorem when investing effort increases quality stochastically.

36See also Matthews (1984); Kleiner, Moldovanu and Strack (2021). Indeed, it can be proven à la the proof
of Border’s theorem in Kleiner, Moldovanu and Strack (2021, Theorem 3).

14



ŵ′(q) ≤ 1) and p(q) = q−ŵ(q)
q−q◦

for q ̸= q◦ and p(q◦) = 0. Then, ŵ(q) can be induced by the

rating π : Q → ∆(S) consisting of S = [q(θ), q(θ̄)] ∪ {pass, fail} and

π(q) =

q w.p. 1− p(q)

pass w.p. p(q)
, ∀q ∈ [q(θ), q(θ̄)],

π(q) = fail w.p. 1, ∀q /∈ [q(θ), q(θ̄)].

3.2 Principal’s Problem

The principal’s problem can now be formulated as a mechanism design problem without

direct flexible transfers but with a “quasi-transfer”w(θ) subject to the feasibility constraint

because it must be induced by a rating scheme.

[P] max
q(θ),w(θ)

∫ θ̄

θ

v(q(θ), θ) dF (θ) (6)

subject to, for all θ ∈ [θ, θ̄],

q(θ) increasing (IC-Mon)

w(θ)− c(q(θ), θ) = −
∫ θ

θ

cθ(q(x), x) dx+ U (IC-Env)

w(θ)− c(q(θ), θ) ≥ 0 (IR)∫ θ

θ

w(θ′) dF (θ′) ≥
∫ θ

θ

q(θ′) dF (θ′), (MPS)∫ θ̄

θ

w(θ) dF (θ) =

∫ θ̄

θ

q(θ) dF (θ) (BP)

It is worth nothing that the Myersonian approach (i.e., substituting (IC-Env) into the

objective, maximizing the resulting expression, and checking the monotonicity of the

solution) is infeasible here because there is no transfer function available to ensure that

the solution satisfies the incentive compatibility (see also Amador and Bagwell, 2013).
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4 Optimal Deterministic Ratings

4.1 Principal’s Problem

In this section, I restrict attention to deterministic rating schemes π : Q → S, which

either fully reveal the quality or pool some qualities into a single score. By the revelation

principle, it is without loss to restrict attention to right-continuous π : Q → S because

rating schemes that are not right-continuous cannot implement any quality scheme

q(θ) (i.e., no equilibrium exists).37 When quality is fully revealed, the market learns the

quality. When multiple qualities are mapped to the same score s, the lowest quality

min{q : π(q) = s} (which exists by the right-continuity of π) strictly dominates all other

q ∈ {q : π(q) = s}, so only the lowest quality will be chosen, and the market also learns

the quality (see also Zapechelnyuk, 2020, Claim 1). Therefore, in either case, the interim

wage is w(θ) = q(θ).

Lemma 3. Under deterministic ratings, the interim wage function is w(θ) = q(θ).

By the revelation principle and Lemma 2, looking for the optimal deterministic rating

scheme π is equivalent to looking for the optimal quality scheme q(θ). Thus, I shall focus

on the quality scheme and be fairly casual in distinguishing the two.

Assume c(q, θ) = c(q)/θ and rewrite the agent’s utility as u(q, θ) = θq−c(q). Substituting

w(θ) = q(θ), the principal’s problem [P] becomes

[P’] max
q(θ)

∫ θ̄

θ

v(q(θ), θ) dF (θ) (7)

subject to, for all θ ∈ [θ, θ̄],

q(θ) increasing (IC-Mon)

θq(θ)− c(q(θ)) =

∫ θ

θ

q(x) dx+ U (IC-Env)

θq(θ)− c(q(θ)) ≥ 0. (IR)

The principal’s problem [P’] is equivalent to the delegation problem (à la Holmstrom’s

(1984)) with voluntary participation where the principal determines a set of permissible

qualities q and delegates the agent to choose one from the set or the outside option

37For example, π(q) =

{
0, if q ≤ 1

1, if q > 1
cannot implement any quality scheme q(θ) because the agent will

always choose the quality q > 1 that is as close to 1 as possible.
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q = 0 (or not taking the test) (see Amador and Bagwell, 2022). Indeed, by fully revealing

quality, the principal imposes no restrictions on the delegation set. By pooling multiple

qualities to the same score, the principal effectively removes all but the lowest of the

these qualities from the delegation set. Hence, because choosing a quality q is equivalent

to reporting a type θ, the delegation set is q(Θ) ≡ {q(θ) : θ ∈ Θ}.

The following lemma characterizes the properties of the optimal quality scheme q(θ),

which consists of pooling and full revealing intervals and contains at most countably

many jump discontinuities.

Lemma 4 (Melumad and Shibano, 1991, Proposition 1; Alonso and Matouschek, 2008,

Lemma 2). An incentive-compatible quality scheme q(θ) consists of pooling intervals

(where q(θ) is constant) and full revealing intervals (where q(θ) = qf (θ)) and at most

countably many jump discontinuities.

At each discontinuity θ̂ ∈ [θ, θ̄], the following conditions must hold.

1. q(θ̂−)− c(q(θ̂−), θ̂) = q(θ̂+)− c(q(θ̂+), θ̂),

2. q(θ) = q(θ̂−) for θ ∈ [q−1
f (q(θ̂−)), θ̂) and q(θ) = q(θ̂+) for θ ∈ (θ̂, q−1

f (q(θ̂+))],

3. q(θ̂) ∈ {q(θ̂−), q(θ̂+)},

where q−1
f (·) = max{min{c′(·), θ̄}, θ}, and q(θ̂−) and q(θ̂+) denote the left and right limit

of q(θ) at θ̂.

Figure 1: Example of an implementable q(θ) when c(q) = q2/2

Figure 1 illustrates a quality scheme q(θ) implementable by a deterministic rating

scheme. For example, when θ = 0 and c(q) = q2/2, and if q(θ̄) = qf (θ̄), an undominated

17



q(θ) must be an extreme point of the mean-preserving contraction (MPC) of qf (θ) = θ on

[0, θ̄].38

Among the possible jump discontinuities of q(θ), the jump at the cutoff type due to

the participation constraint is of particular interest.

Lemma 5. There exists a cutoff type θ0 ∈ [θ, θ̄] such that q(θ) = 0 for all θ ∈ [θ, θ0) and

q(θ) > 0 for all θ ∈ (θ0, θ̄]. If θ0 ∈ (θ, θ̄), then θ0 is indifferent between qi(θ0) and q = 0;

therefore, q∗(θ0) = qi(θ0).

When θ0 ≥ θ, types θ ∈ [θ, θ0] chooses q = 0 and are thus excluded. When θ0 < θ, the

exclusion region [θ, θ0] is empty, and all types θ ∈ [θ, θ̄] choose q > 0.

Despite the equivalence to delegation, I use a different approach to characterize

the solution under weaker sufficient conditions, which are also necessary under linear

delegation. The conditions will allow for the optimality of a bang-bang quality scheme

(induced by pass/fail tests), where agents either choose q = 0 or are bunched at another

quality level. See Appendix A.1 (see also Xiao (2023a)).

4.2 When are lower censorship and pass/fail optimal?

Now I focus on two classes of deterministic ratings with minimum standard—lower

censorship and pass/fail tests—and characterize conditions for their optimality.

Definition 3. Lower censorship is a deterministic rating π : Q → S = Q ∪ {fail} that

reveals the quality q if q ≥ q0 for some q0 ∈ Q and gives a “fail” otherwise. In other words,

π(q) =

q, if q ≥ q0,

fail, otherwise.

Definition 4. A pass/fail test is a deterministic rating π : Q → {pass, fail} that gives

a “pass” if q ≥ q0 for some q0 ∈ Q and a “fail” otherwise. In other words, π(q) =pass, if q ≥ q0,

fail, otherwise.

The threshold q0 in these definitions is called a minimum standard. A fully revealing

test is a special case of lower censorship where the minimum standard q0 = 0.

38Formally, according to Kleiner et al. (2021, Proposition 5), an undominated q(θ) is implementable by
deterministic ratings if and only if there exists an extension q̃(θ) of q(θ) to [0, θ̄′] such that q̃(θ̄′) = qf (θ̄

′)
(q(0) = qf (0) is already implied by (IR)) and q̃(θ) is an extreme point of the MPC of qf (θ) on [0, θ̄′]. In
general, by the convexity of c(q), Lemma 4 implies that an undominated q(θ) must be a contraction of qf (θ)
(but not necessarily mean-preserving) on [0, θ̄′].
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Lower censorship with minimum standard q0 ∈ Q induces a quality scheme that

potentially consists of exclusion, bunching, and fully revealing regions, which takes the

form of39

q(θ) =


0, if θ ∈ [θ, θ0)

qi(θ0), if θ ∈ [θ0, θc(θ0))

qf (θ), if θ ∈ [θc(θ0), θ̄]

(8)

where θ0 = c(q0)/q0 ∈ R+ that satisfies qi(θ0) = q0 is the cutoff type, and θc(θ0) ≡
q−1
f (qi(θ0)) ∈ R+ is the type that would choose qi(θ0) under full revelation.

In words, the quality scheme q(θ) induced by lower censorship with minimum stan-

dard q0 consists of possibly three regions: (i) the exclusion region [θ, θ0) where agents

choose q = 0 (and do not take the test), (ii) the bunching region [θ0, θc(θ0)) where

agents are bunched at q0 = qi(θ0), and (iii) the fully revealing region [θc(θ0), θ̄] where

agents choose qf (θ). Some of these regions can be empty if (i) θ∗0 ≤ θ, (ii) θc(θ∗0) ≤ θ,

or (iii) θc(θ∗0) ≥ θ̄. It is useful to define the start of fully revealing region by θL(θ0) =

med{θc(θ0), θ, θ̄}.40

Analogously, a pass/fail test with minimum standard q0 ∈ Q induces the quality

scheme in the form of

q(θ) =

0, if θ ∈ [θ, θ0)

qi(θ0), if θ ∈ [θ0, θ̄]

where θ0 = c(q0)/q0 ∈ R+ that satisfies qi(θ0) = q0 is the cutoff type. A pass/fail induces a

quality scheme q(θ) that consists of possibly two regions: (i) the exclusion region [θ, θ0)

where agents choose q = 0 and (ii) the bunching region [θ0, θ̄] where agents choose

q0 = qi(θ0).

Figure 2: q(θ) induced by lower censorship (left, center) and pass/fail (center, right)

There are several caveats. First, it is possible that c(q0)/q0 ∈ [0, θ]. In this case, θ0 =

39By convention, [x, y), (x, y), and [x, y] represent the empty set if x ≥ y.
40Define med{x, y, z} as the median of x, y, and z. In other words, θL(θ0) = max{min{θc(θ0), θ̄}, θ}.
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c(q0)/q0 is a hypothetical cutoff “type” that is below θ, and the exclusion region [θ, θ0) is

empty.

Second, it is also possible that c(q0)/q0 ≥ θ̄. However, because any q0 > qi(θ̄) cannot be

optimal because no one would meet this standard, it is without loss to assume q0 ≤ qi(θ̄)

(and I have already defined qmax = qi(θ̄)). Thus, for any q0 ∈ Q, there exists θ0 = c(q0)/q0 ∈
[0, θ̄] such that qi(θ0) = q0.41

Third, for lower censorship with minimum standard q0 ≥ qf (θ̄), we have θc(θ0) ≥ θ̄,

so the fully revealing region [θc(θ0), θ̄] is empty. In words, the minimum standard is so

high that no one will choose any quality strictly above it in equilibrium. Thus, the lower

censorship induces the same quality scheme as a pass/fail test with the same minimum

standard q0.42 On the other hand, if θc(θ0) < θ̄, q(θ) is continuous at θc(θ0) because

qi(θ0) = qf (θc(θ0)) by definition.

Lastly, the exclusion region is empty if and only if θ0 ≤ θ, and both exclusion and

bunching regions are empty if and only if θc(θ0) ≤ θ.

4.2.1 Quality Maximization

To provide intuitions, I start with the simplest case where the principal’s objective is

expected quality, i.e., v(q, θ) = q. In this case, the sufficient conditions for the optimality

of lower censorship and pass/fail tests depend only on the probability density f(θ).

Proposition 2. Assume v(q, θ) = q. The optimal deterministic rating scheme

• is lower censorship if f(θ) is unimodal,

• is pass/fail if f(θ) is increasing or θc(θ) ≥ θ̄,

• induces no exclusion if f(θ) is decreasing,

• is fully revealing if and only if f(θ) is decreasing and θ = 0.

Denote by θm ∈ [θ, θ̄] the mode of f(θ). Then, the optimal cutoff type θ∗0 ∈ [θ−1
c (θm), θm].

Proof. The proof follows immediately from the necessary and sufficient conditions in

Proposition 3 for the more general case.

The optimal deterministic rating has a minimum standard q0 = qi(θ
∗
0) above which it

fully reveals quality. The rating scheme leads to (i) exclusion of the low types [θ, θ∗0), (ii)

41For q0 = 0, θ0 = limq0→0 c(q0)/q0 = 0.
42Note that although they induce the same quality scheme in equilibrium, a pass/fail test is not a special

case of lower censorship because the off-path strategies q > q0 lead to different outcomes.
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pooling of the intermediate types [θ∗0, θL(θ
∗
0)) who are bunched at the minimum standard

qi(θ
∗
0), and (iii) full separation of the high types [θL(θ

∗
0), θ̄].

43 In particular, if θc(θ∗0) ≥ θ̄,

the optimal deterministic rating is a pass/fail test. See Figure 3 for an illustration of the

optimal quality scheme q∗(θ) for decreasing, unimodal, and increasing f(θ). Importantly,

the mode θm of the density f(θ) must be in the bunching region, i.e., θm ∈ [θ∗0, θL(θ
∗
0)].

Figure 3: q∗(θ) for decreasing, unimodal, and increasing f(θ)

Intuition. First, consider a perturbation to q∗(θ) = qf (θ) in the fully revealing region at

θ̂ ∈ (θL(θ
∗
0), θ̄). By Lemma 4, the perturbation leads to

qc(θ) =

qf (θ̂ − ε), if θ ∈ (θ̂ − ε, θ̂),

qf (θ̂ + ε), if θ ∈ (θ̂, θ̂ + ε).

By setting a minimum standard qf (θ̂ + ε), the rating scheme creates two pooling regions:

[θ̂ − ε, θ̂] (lower types) and [θ̂, θ̂ + ε] (higher types). Thus, the minimum standard leads

43Some of these intervals can be empty if (i) θ∗0 ≤ θ, (ii) θc(θ∗0) ≤ θ, or (iii) θc(θ∗0) ≥ θ̄.
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to a trade-off: on the one hand, it induces higher types to invest more in quality than

they would under full revelation to separate themselves from the lower types who cannot

meet the standard. On the other hand, it discourages the lower types from investing in

quality because they will not reach the minimum standard (as participation is voluntary).

Figure 4: A perturbation (in red) to qf (θ) at θ̂ in the fully revealing region

Figure 4 illustrates this trade-off. Specifically, when v(q, θ) = q and c(q) = q2/2, the

loss due to discouraged lower types is represented by the area of the triangle on the left

(in light yellow), and the gain due to the motivated higher types is represented by the

area of the triangle on the right (in bright yellow). The two triangles have the same area.44

Therefore, the shift of the area from the left to the right decreases average quality (i.e.,

the loss from lower types exceeds the gain from higher types) if and only if the density

f(θ) is decreasing at θ̂ so that the area on the left has more weight. In other words, the

principal will fully reveal quality (and not set a minimum standard) in the region where

f(θ) is decreasing.

On the other hand, if the density f(θ) is increasing on [θ, θ̄], the gain from higher types

always exceeds the loss from lower types, even as perturbations become large, because

the two triangles always have the same area. Thus, the optimal rating does not induce any

fully revealing region, and agents either choose q = 0 or the minimum standard. In other

words, if f(θ) is increasing, the principal will set a high minimum standard such that even

the highest type needs to invest more in quality than he would under full revelation to

pass the test, in order to provide stronger incentives to high types at the cost of excluding

more low types. Because types are increasingly more concentrated towards the top, this

simple pass/fail test induces the highest average quality.

44For general c(q), the loss and the gain regions still have the same area, although they are not necessarily
triangles.
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Second, consider a perturbation to the optimal scheme q∗(θ) in the exclusion and

bunching regions. The perturbation can involve either a lower or higher minimum stan-

dard, which leads to more or less participation. Intuitively, a lower minimum standard

increases participation because more lower types can reach the standard without violat-

ing their participation constraints. On the other hand, it reduces the incentives for higher

types who are bunched at the minimum standard. Analogously, a higher minimum

standard reduces participation but increases the incentives for higher types to invest in

quality.

(a) Optimal Quality Scheme

(b) More participation (c) Less participation

Figure 5: Perturbations on pooling regions

Figure 5 illustrates this trade-off in both directions. Similar to a perturbation in the

fully revealing region, the loss (in light yellow) and the gain (in bright yellow) have the

same area. Note that if f(θ) is unimodal with a mode θm ∈ [θ, θ̄], the optimal cutoff θ∗0 is

such that θm ∈ [θ∗0, θL(θ
∗
0)] is in the bunching region. Thus, unimodality of the density

implies either more or less participation is undesirable. In particular, if f(θ) is decreasing

on [θ, θ̄], no exclusion is optimal (i.e., θ∗0 = θ) because reducing participation for a higher
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minimum standard (Figure 5b) is undesirable for the same argument as before. If f(θ)

is increasing, θL(θ∗0) ≥ θm = θ̄ implies θL(θ∗0) = θ̄, so a pass/fail test is optimal, as argued

before. Alternatively, if θc(θ) ≥ θ̄, then θc(θ
∗
0) ≥ θ̄ for every possible θ∗0 ∈ [θ, θ̄]. In other

words, the range of types is so small that the start of the fully revealing region is higher

than θ̄, so the fully revealing region can never be reached. Hence, pass/fail test is also

optimal in this case.45

4.2.2 Linear Delegation

In this subsection, I extend the analysis to a more general class of objective functions,

v(q, θ) = β(θ)q − αc(q) + d(θ). This is referred to as “linear delegation” in Kolotilin and

Zapechelnyuk (2019) because the principal’s marginal payoff from the agent’s action q is

linear in (a transformation of) the agent’s action. In this case, the “relative concavity” of

the principal and agent’s preferences, given by −vqq(q, θ)/c
′′(q) = α, is constant.

Condition (LD). The principal’s objective function is v(q, θ) = β(θ)q−αc(q)+ d(θ), where

α ≥ 0 and β(θ) ≥ αθ (by Assumption 1).

Necessary and Sufficient Conditions

Define the characteristic function r(θ) and R(θ), which generalizes the density f(θ) and

distribution F (θ) by incorporating the principal and agent’s preferences, as

r(θ) = (β(θ)− αθ)f(θ)− α(F (θ)− F (θ0)) on R+ (9)

and

R(θ) =

∫ θ

θ

r(θ̃) dθ̃ =

∫ θ

θ

β(θ̃)f(θ̃) dθ̃ − αθ(F (θ)− F (θ0)). (10)

Note that r(θ) is defined on R+ instead of [θ, θ̄], which requires extending F (θ) and f(θ)

from [θ, θ̄] to R+. By convention, for all θ < θ, f(θ) = 0, F (θ) = 0, and thus r(θ) = αF (θ0) ≥
0; for all θ > θ̄, f(θ) = 0, F (θ) = 1, and thus r(θ) = −α(1− F (θ0)) ≤ 0.

Example (Quality Maximization). If v(q, θ) = q, then r(θ) = f(θ) and R(θ) = F (θ).

Observation 1. (i) r(θ) ≥ 0 for all θ ≤ θ0, so R is increasing on [0, θ0]. (ii) r(θ) can be

discontinuous at θ (if θ > 0) and θ̄ because r(θ) ≥ r(θ−) = αF (θ0) and r(θ̄) ≥ r(θ̄+) =

−α(1− F (θ0)). In these cases, R can be non-differentiable and have a convex kink at θ

and a concave kink at θ̄.46

45Cf. Zapechelnyuk (2020, Theorem 2). See Remark 4 for the comparison.
46See also Lemma B.3 for discontinuities for general preferences.
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The characterization function R(θ) is determined by the distribution F (θ), objective

v(q, θ), the cost function c(q). It can be viewed as a quasi-distribution function of types.

First, I focus on the exclusion and bunching regions [θ, θc(θ0)]. Define the multiplier

A(θ0) by

A(θ0) =
1

θc(θ0)− θ0

∫ θc(θ0)

θ0

r(θ) dθ, (11)

which is the slope of the line connecting θ0 and θc(θ0) on R(θ). In particular, if θc(θ0) = θ0

(i.e., θ0 = 0), A(θ0) = limθ→θ+0

R(θ)−R(θ0)
θ−θ0

= r(θ0+).

Example (Quadratic cost). If c(q) = q2/2, then θc(θ0) = 2θ0, and A(θ0) =
R(2θ0)−R(θ0)

θ0
.

I state a condition on r(θ) that must hold in the bunching and the exclusion regions.

Condition (S) (Subgradient).
∫ θ

θ0
r(θ̃) dθ̃ ≥ A(θ0)(θ−θ0) and A(θ0) > 0 for all θ ∈ [0, θL(θ0)].

By the definition of A(θ0), condition (S) holds with equality at θ = θc(θ0). Condition (S)

says that A(θ0) is the subgradient of the restriction of the function R to [0, θc(θ0)], denoted

by R|[0,θc(θ0)], at θ0. Geometrically, this means the line ℓ connecting θ0 and θc(θ0) (red

dashed line in Figure 6) lies below R for all θ ∈ [0, θc(θ0)]. In technical terms, ℓ is the

supporting hyperplane of the epigraph of R|[0,θc(θ0)] containing θ0. If R(θ) is differentiable

at θ0, then ℓ must be tangent to R(θ) at θ0, i.e., r(θ0) = A(θ0) (see Lemma B.4).

(a) F (θ) that satisfies condition (S) (b) F (θ) that violates condition (S)

Figure 6: Geometric Illustration of Condition (S)

Observation 2. Condition (S) can never be satisfied at θ0 ≥ θ̄.

Second, I state another condition on the concavity of R(θ) in the fully revealing region.

Condition (C) (Concavity). r(θ) is decreasing in θ on (θL(θ0), θ̄].
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To characterize the set of functions that satisfy conditions (S) and (C), I introduce

the following definitions that generalize the definitions of unimodal, increasing, and

decreasing functions r(θ).

Definition 5. A function r(θ) is

• quasi-unimodal if it satisfies conditions (S) and (C) for some θ0,

• quasi-increasing if it satisfies condition (S) at some θ0 such that θc(θ0) ≥ θ̄ (i.e.,

qi(θ0) > qf (θ̄)),

• quasi-decreasing if it satisfies conditions (S) and (C) at some θ0 ≤ θ.

Remark 2. Quasi-I on R+ is equivalent to quasi-I on [θ, θ̄], for I ∈ {unimodal, increasing,

decreasing}, which make the statements convenient. Nevertheless, I on R+ is stronger

than I on [θ, θ̄] because f(θ) = 0 for all θ /∈ [θ, θ̄].47

Example (Linear-Quadratic). Assume v(q, θ) = q, c(q) = q2/2, and θ = 1. Figure 7

illustrates quasi-unimodal, quasi-increasing, and quasi-decreasing f(θ) on [θ, θ̄].

Figure 7: Quasi-unimodal (all), quasi-increasing (center), and quasi-decreasing (right)

In particular, for a left-skewed unimodal f(θ) (center of Figure 7), Figure 8 illustrates

that condition (S) is satisfied at some θ∗0 such that θc(θ∗0) ≥ θ̄ (so that f is quasi-increasing).

Loosely speaking, r(θ) is quasi-unimodal if types are concentrated around the mode of

r(θ), quasi-increasing if types are concentrated towards the top of r(θ) (i.e., r is sufficiently

left-skewed), and quasi-decreasing if types are concentrated towards the bottom of r(θ)

(i.e., r is sufficiently right-skewed).48 In each case, it need not be exactly unimodal,

increasing, or decreasing in r(θ) because the definition allows some wiggle room for

47For example, if θ ∼ Unif [1, 2], then f(θ) = 1[1 ≤ θ ≤ 2] is decreasing and increasing on [1, 2] but neither
decreasing nor increasing on R+.

48r(θ) need not be a real probability density function, although r(θ) = f(θ) when v(q, θ) = q.
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Figure 8: Unimodal f that is quasi-increasing (and quasi-unimodal)

small deviations. The magnitude of deviations allowed depends on [θ, θ̄] and θc(θ). For

example, if θ = 0, then r(θ) is quasi-decreasing if and only if it is decreasing—i.e., no

deviations are allowed. The following lemma formalizes these intuitions.

Lemma 6. If r is unimodal on [θ, θ̄], then it is quasi-unimodal. If r is increasing on [θ, θ̄],

then it is quasi-increasing. If r is decreasing on [θ, θ̄], then it is quasi-decreasing; the

converse is true if θ = 0. If θ̄ ≤ θc(θ), then every unimodal r(θ) is quasi-increasing.

With the definitions above, I can state the sufficient conditions for lower censorship

and pass/fail tests conveniently.

Proposition 3 (Necessary and Sufficient Conditions). Under Condition LD, the optimal

deterministic rating scheme

• is lower censorship (with cutoff type θ∗0) if and only if r(θ) is quasi-unimodal (with

conditions (S) and (C) satisfied at θ∗0),

• is pass/fail if and only if r(θ) is quasi-increasing,

• induces no exclusion if and only if r(θ) is quasi-decreasing,

• is fully revealing if and only if r(θ) is decreasing on R+.

Proof sketch. Sufficiency can be shown using optimal control methods in Appendix A.1.

Necessity can be shown à la Amador and Bagwell (2013, Proposition 2) using perturbation

methods.

Remark 3. If θ = 0, then lower censorship induces no exclusion if and only if it is fully

revealing.
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See the proof in Appendix B.2.2. If conditions (S) and (C) are satisfied at θ∗0, the optimal

deterministic rating has a minimum standard q0 = qi(θ
∗
0) above which it fully reveals

quality. The induced quality scheme q∗(θ) features (i) exclusion of the low types [θ, θ∗0), (ii)

pooling of the intermediate types [θ∗0, θL(θ
∗
0)) who are bunched at the minimum standard

qi(θ
∗
0), and (iii) full separation of the high types [θL(θ∗0), θ̄].

49 In particular, if θc(θ∗0) ≥ θ̄ (or

equivalently, qi(θ∗0) ≥ qf (θ̄)), the optimal deterministic rating is a pass/fail test.

The following corollary, which follows immediately from Lemma 6, provides sufficient

conditions that are easy to check, as they depend only on the shape of r(θ) and guarantee

the existence of θ0 that satisfy conditions (S) and (C) without solving for it.

Corollary 3.1 (Sufficient conditions). The sufficient conditions for lower censorship,

pass/fail tests, and lower censorship without exclusion are that r(θ) is unimodal, increasing,

and decreasing, respectively.

Intuition. Under Condition LD, the “density” function r(θ) incorporates β(θ) and α

into the density function f(θ). First, when α = 0, β(θ) can be easily incorporated into the

density, as β(θ)f(θ) can be treated as the density.50 Thus, the intuitions for the quality

maximization case (in Section 4.2.1) that relates the density to the optimal deterministic

rating scheme carry over.

Second, fix β(θ) = θ. Then, when α = 0, f̃(θ) ≡ θf(θ) can be treated as the density. As

α increases from 0 to 1, the principal’s preference becomes more aligned with the agent’s

preference, so a perturbation to the fully revealing region is less likely to be desirable. So

is a perturbation on the pooling regions that reduces participation. Thus, the “density”

function r(θ) = (1−α)f̃(θ)−α(F (θ)−F (θ0)) is more likely to be decreasing as α increases.

Treating r(θ) as the density, conditions (C) is equivalent to the density being decreas-

ing in the fully revealing region, as discussed in Section 4.2.1. Condition (S), which is

weaker than unimodality, is necessary and sufficient for the cutoff to be θ∗0 (see Sec-

tion 4.2.2). Moreover, the necessary and sufficient condition for pass/fail tests is that

r(θ) is quasi-increasing because the range of type can be so small that the start of a fully

revealing region cannot be reached even at θ̄ (i.e., θc(θ∗0) ≥ θ̄).

Comparison with Amador and Bagwell (2022). I briefly compare my results with

Amador and Bagwell (2022, henceforth AB). See Appendix C for a detailed comparison.

49Some of these intervals can be empty if (i) θ∗0 ≤ θ, (ii) θc(θ∗0) ≤ θ, or (iii) θc(θ∗0) ≥ θ̄.
50This is because, for v(q, θ) = β(θ)q,

∫ θ̄

θ
v(q, θ)f(θ) dθ =

∫ θ̄

θ
q(θ)(β(θ)f(θ)) dθ.
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Define

L(θ|θ0) =
R(θ)−R(θ0)

θ − θ0
=

1

θ − θ0

∫ θ

θ0

r(θ̃) dθ̃, (12)

which is the slope of the line connecting θ0 and θ on R(θ). In particular, A(θ0) =

L(θc(θ0)|θ0). Then, condition (S) can be decomposed into two conditions on the bunching

and the exclusion regions, respectively.

Condition (S1). L(θ|θ0) ≥ L(θc(θ0)|θ0) = A(θ0) > 0 for all θ ∈ (θ0, θL(θ0)].

Condition (S2). L(θ|θ0) ≤ L(θc(θ0)|θ0) = A(θ0) for all θ ∈ [0, θ0).

The following two observations summarize the differences between my conditions

and AB’s sufficient conditions.

Observation 3. Because θc(θ0) ≥ θL(θ0), condition (S1) is weaker than condition (i) in AB,

which is equivalent to L(θ|θ0) ≥ L(θL(θ0)|θ0) for all θ ∈ (θ0, θL(θ0)] (see condition AB(i) in

Appendix C). Consequently, their condition implies that a fully revealing region must

exist because it rules out the possibility that θc(θ0) > θ̄ (e.g., when r(θ) is increasing).

Observation 4. AB also require condition (C) to hold at all θ0 ∈ [θ, θ̄). Then, condition

(S) can only hold at θ0 ≤ θ, so no exclusion is always optimal. Therefore, a pass/fail test

can never be optimal, except in the trivial case (i.e., θ̄ ≤ θc(θ)) where no type fails in the

equilibrium.

Optimal Cutoff Type

As mentioned above, condition (S) ensures that θ0 is the optimal cutoff type. To see this,

under lower censorship (or pass/fail tests if θL(θ0) = θ̄) with cutoff type θ0 ∈ [θ, θ̄], the

principal’s expected payoff is given by

V (θ0) =

∫ θL(θ0)

θ0

v(qi(θ0), θ) dF (θ) +

∫ θ̄

θL(θ0)

v(qf (θ), θ) dF (θ). (13)

By definition, c(qi(θ0)) = θ0qi(θ0) implies q′i(θ0) =
qi(θ0)

θc(θ0)−θ0
> 0. Thus, a higher cutoff θ0

is associated with a higher minimum standard qi(θ0), thereby increasing the principal’s

expected payoff in the bunching region [θ0, θL(θ0)]. At the same time, it implies more

exclusion.
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Observation 5. The multiplier A(θ0) defined in equation (11) is equal to

A(θ0) = L(θc(θ0)|θ0) =
1

θc(θ0)− θ0

∫ θL(θ0)

θ0

vq(qi(θ0), θ) dF (θ). (14)

Thus, V ′(θ0) = A(θ0)qi(θ0)− v(qi(θ0), θ0)f(θ0).

If condition (S) is satisfied at θ0, then θ0 satisfy the Kuhn-Tucker first-order condition51

V ′(θ0) = A(θ0)qi(θ0)− v(qi(θ0), θ0)f(θ0) = 0 if θ0 > 0,

V ′(θ0) ≤ 0 if θ0 = 0.
(OPT)

In words, increasing the cutoff θ0 leads to a marginal increase of A(θ0) ·qi(θ0) in the bunch-

ing region (due to a higher minimum standard) and a marginal decrease in the principal’s

expected payoff of v(qi(θ0), θ0)f(θ0) in the exclusion region (due to more exclusion).52 The

optimal cutoff is when these two marginal effects balance out each other.

The following observations provide sufficient conditions for the optimality of “no rent

at the bottom” (i.e., θ∗0 ≥ θ) and of no exclusion (i.e., θ∗0 ≤ θ).

Observation 6. If vq(qi(θ), θ) ≥ 0 for all θ ∈ [θ, θc(θ)] (and strictly positive for some θ), then

the optimal cutoff θ∗0 ≥ θ. Therefore, the lowest type has no information rent (i.e., U = 0).

Intuitively, if vq(qi(θ), θ) ≥ 0 for all θ ∈ [θ, θc(θ)], the principal can always benefit from

a higher minimum standard that push the lowest type θ to the boundary of the (IR)

condition (without increasing exclusion).

Observation 7. If f(θ) is decreasing and vqθ(q, θ) ≤ −vqq(q, θ)/c
′′(q) for all q ∈ Q and

θ ∈ [θ, θ̄], then no exclusion is optimal (i.e., θ∗0 ≤ θ).

The proof is in Appendix B.2.3. The observations hold for general preferences v(q, θ),

regardless of Condition LD.

4.2.3 Examples: State-(In)Dependent Preferences

In this subsection, I provide several common examples of linear delegation, which

include state-independent and state-dependent preferences.

51See also the jump (switching) condition in the optimal control in Bryson and Ho (1975, Chapter 3.7)
and Clarke (2013, Chapter 22.5).

52The marginal effects due to a higher θL(θ0) always cancel out each other in the bunching and fully
revealing regions.
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State-Independent Preferences. Quality maximization (i.e., v(q, θ) = q) is commonly

studied in the literature (Zapechelnyuk, 2020; Rodina and Farragut, 2020).

Example 4.1 (Quality Maximization). Assume v(q, θ) = q. Thus, we have r(θ) = f(θ) and

R(θ) = F (θ). By Proposition 3, the optimal deterministic rating scheme

• is lower censorship if and only if f(θ) is quasi-unimodal,

• is pass/fail if and only if f(θ) is quasi-increasing,

• has no exclusion if and only if f(θ) is quasi-decreasing, and

• is fully revealing if and only if θ = 0 and f(θ) is decreasing.

The sufficient conditions are f(θ) being unimodal, increasing, and decreasing on [θ, θ̄], re-

spectively. See Figure 9 for graphical illustrations (and Figure 7 for the density functions).

(a) Unimodal f(θ) (convex-concave F (θ)) (b) Increasing f(θ) (convex F (θ)) on [θ, θ̄]

(c) Decreasing f(θ) (concave F (θ)) on [θ, θ̄] (d) Unimodal f(θ) that is quasi-increasing

Figure 9: Quality Maximization
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Remark 4. Zapechelnyuk (2020, Theorem 2) provides a sufficient condition for pass/fail

that is equivalent to f(θ) being unimodal and θ̄ ≤ θc(θ), which implies that f(θ) is quasi-

increasing.53 The latter is restrictive for small θ because θc(0) = 0.

In addition to quality maximization, a principal with state-independent preferences

may have a constant bliss point qe < qmax. For example, Kartik, Kleiner and Van Weelden

(2021) assumes a linear or quadratic loss with a constant bliss point.

Example 4.2 (State-independent Quadratic Loss). Assume v(q, θ) = −(q − 1)2, u(q, θ) =

−(q − θ)2, and Θ = [0, 1]. This is equivalent to v(q, θ) = q − q2/2 and u(q, θ) = θq − q2/2.

Then,

r(θ) = (1− θ)f(θ)− (F (θ)− F (θ0))

and R(θ) = (1− θ)F (θ).

Example 4.3 (State-independent Linear Loss). Assume v(q, θ) = −|q − 1|, u(q, θ) = −(q −
θ)2, and Θ = [0, 1]. This is equivalent to v(q, θ) = (q− 1) · sgn(1− q) and u(q, θ) = θq− q2/2.

Then, if θ0 ≤ 1/2, r(θ) = f(θ) and R(θ) = F (θ) because qi(θ0) = 2θ0 ≤ 1. Otherwise, if

θ0 ≥ 1/2,

r(θ) =

f(θ), if θ ≤ θ0

−f(θ), if θ ≥ θ0
and R(θ) =

F (θ), if θ ≤ θ0

2F (θ0)− F (θ), if θ ≥ θ0

In particular, because θ = 0, r(θ) is quasi-I if and only if f(θ) is quasi-I for I ∈ {unimodal,

increasing, decreasing}. Thus, the optimal deterministic rating scheme

• is fully revealing if and only if f(θ) is decreasing,

• is pass/fail if and only if f(θ) is quasi-increasing, and

• is lower censorship if and only if f(θ) is quasi-unimodal.

Remark 5. In the two examples above, the results implied by Proposition 3 is consistent

with Propositions 1, 2, and 3 in Kartik, Kleiner and Van Weelden (2021), as the triplet

(fully revealing test, pass-fail, lower censorship) corresponds to (full delegation, no

compromise, interval delegation) in their setting.54

53To see this, his assumption 3 that u(qf (θ̄), θ) ≥ 0 for all θ ∈ [θ, θ̄] is equivalent to qi(θ) ≥ qf (θ̄) for all
θ ∈ [θ, θ̄], which is equivalent to qi(θ) ≥ qf (θ̄) and thus θ̄ ≤ θc(θ).

54They also allow for stochastic delegation mechanisms, which are not considered here.
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State-Dependent Preferences. Linear delegation also includes cases where the prin-

cipal’s preference depend on the agent’s type. In many applications, the principal

internalizes a fraction α ∈ [0, 1] of the agent’s costs, v(q, θ) = q − αc(q)/θ. For ex-

ample, this can arise from parents (who pay tuition fees to the school) partially in-

ternalizing the student’s cost (Onuchic and Ray, 2023), students overestimating their

costs, social spillovers of quality investment, or the regulatory certifier maximizing a

weighted sum of firms’ profit and average quality (Bizzotto and Harstad, 2023) because

E[αq(θ) + (1− α)U(θ)] = E[q(θ)− αc(q(θ))/θ].

Example 4.4 (Partial Cost Internalization). Assume v(q, θ) = q − αc(q)/θ. Then,

r(θ) = (1− α)f(θ)− α(F̃ (θ)− F̃ (θ0)),

where F̃ (θ) =
∫ θ

θ
f(x)/x dx.55 The function r(θ) is a weight sum of the density f(θ) and a

decreasing function −(F̃ (θ)− F̃ (θ0)).

In the utilitarian benchmark where α = 1, because r(θ) = −(F̃ (θ)− F̃ (θ0)) is decreas-

ing on R+, a fully revealing test is optimal. As α decreases to 0, a minimum standard

becomes optimal because r(θ) is no longer decreasing in R+ (unless θ = 0). Intuitively,

as the preference misalignment increases, it is optimal to have a minimum standard to

provide stronger incentives for high types (possibly at the cost of excluding low types).

If f(θ) is decreasing, the optimal minimum standard will not lead to exclusion because

r(θ) is decreasing on [θ, θ̄] and thus quasi-decreasing on R+. On the other hand, if f(θ)

is unimodal or increasing, tests with minimum standard (lower censorship or pass/fail)

that entails exclusion can be optimal.

The following example shows that for a particular state-dependent preference, the

characterization of the optimal deterministic rating scheme is the same as that for quality

maximization.

Example 4.5 (Kolotilin and Zapechelnyuk, 2019, Proposition 1). Assume v(q, θ) = θq −
c(q)/2. Then, r(θ) = θf(θ)/2 − (F (θ) − F (θ0))/2 is increasing (decreasing) on [θ, θ̄] if

and only if f(θ) is increasing (decreasing) on [θ, θ̄].56 Thus, the same results for quality

maximization hold: the optimal deterministic rating is lower censorship (pass/fail) if f(θ)

is unimodal (increasing).

55To see this, note that
∫ θ̄

θ
(q−αc(q)/θ) dF (θ) =

∫ θ̄

θ
(θq−αc(q)) dF̃ (θ), and that v(q, θ) = θq−αc(q) induces

r(θ) = (1− α)θf(θ)− α(F (θ)− F (θ0)).
56This is because r(θ0) = θ0f(θ0)/2 and r′(θ) = θf ′(θ)/2

sign
= f ′(θ).
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Next, I consider quadratic loss utility functions (with downward bias), a widely studied

case in optimal delegation (see, e.g., Alonso and Matouschek, 2008; Kováč and Mylovanov,

2009; Kleiner et al., 2021).

Example 4.6 (Quadratic Loss). Assume v(q, θ) = −(q− β(θ))2 and u(q, θ) = −(q− θ)2 with

β(θ) ≥ θ and Θ = [0, 1]. This is equivalent to v(q, θ) = β(θ)q − q2/2 and u(q, θ) = θq − q2/2

(i.e., linear delegation with c(q) = q2/2 and α = 1). Then,

r(θ) = (β(θ)− θ)f(θ)− (F (θ)− F (θ0)).

In particular, Proposition 3 implies that a fully revealing test is optimal if and only if r(θ)

is decreasing.57

4.2.4 General Preferences

In this subsection, I consider the general case where the principal’s preference v(q, θ)

only needs to satisfy Assumptions 1 (downward bias) and other mild assumptions: twice

continuously differentiable, vqq(q, θ) ≤ 0, v(0, θ) = 0, and vq(0, θ) > 0 for all q ∈ Q and

θ ∈ Θ. In particular, it does not necessarily satisfy Condition LD (linear delegation).

For example, the principal may partially internalize (a possibly nonconstant fraction

of) the agent’s cost—i.e., v(q, θ) = θq − c̃(q), where c̃(q) is increasing, convex, and satisfies

c̃′(q) ≤ c′(q) for all q ∈ Q. Because the marginal payoffs are vq(q, θ) = θ − c̃′(q) and

uq(q, θ) = θ − c′(q), this belongs to the “nonlinear delegation” case (see Kolotilin and

Zapechelnyuk, 2019).

In this case, the characteristic functions r(θ) and R(θ) can take more general forms.

However, the conditions in Proposition 3 remain sufficient conditions for lower censor-

ship and pass/fail tests, with the r(θ) function in conditions (S) and (C) are replaced by a

more complicated function, which incorporates the principal’s preferences through the

relative concavity −vqq(q, θ)/c
′′(q).

Definition of r(θ) for General Preferences. Define the “relative concavity” of the prin-

cipal and agent’s preferences by

κ = inf
q∈Q,θ∈[θ,θ̄]

{−vqq(q, θ)/c
′′(q)}. (15)

57Cf. Alonso and Matouschek (2008, Proposition 3), as well as Kováč and Mylovanov (2009, Corollary 3)
and Kleiner et al. (2021, Corollary 5), who allow for stochastic delegation.
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Define

r(θ|q) = vq(q, θ)f(θ)− κ(θ − c′(q))f(θ)− κ(F (θ)− F (θ0)). (16)

Recall that θc(θ0) = c′(qi(θ0)). Slightly abusing the notation, substituting q = q(θ) of lower

censorship or pass/fail in equation (8) into r(θ|q), define

r(θ) = r(θ|q(θ)) =


vq(0, θ)f(θ)− κθf(θ)− κ(F (θ)− F (θ0)), if θ ∈ [θ, θ0)

vq(qi(θ0), θ)f(θ)− κ(θ − θc(θ0))f(θ)− κ(F (θ)− F (θ0)), if θ ∈ [θ0, θc(θ0))

vq(qf (θ), θ)f(θ)− κ(F (θ)− F (θ0)), if θ ∈ [θc(θ0), θ̄]

(17)

and R(θ) =
∫ θ

θ
r(θ̃) dθ̃.58 Note that r(θ) may be discontinuous at θ0 because r(θ−0 ) ≥ r(θ+0 )

(see Lemma B.3).

As before, by convention, r(θ) = κF (θ0) ≥ 0 for all θ < θ and r(θ) = −κ(1− F (θ0)) ≤ 0

for all θ > θ̄. Under the general definition,

L(θ|θ0) =
R(θ0)−R(θ)

θ0 − θ

=


1

θ0−θ

[∫ θ0
θ

vq(0, θ̃)f(θ̃) dθ̃ − κθ(F (θ0)− F (θ))
]
, if θ ∈ [θ, θ0),

1
θ−θ0

[∫ θ

θ0
vq(qi(θ0), θ̃)f(θ̃) dθ̃ − κ(θ − θc(θ0))(F (θ)− F (θ0))

]
, if θ ∈ (θ0, θc(θ0)],

59

(18)

which is the slope of the line connecting θ0 and θ on R(θ). Recall that A(θ0) = L(θc(θ0)|θ0).

Proposition 4. The optimal deterministic rating scheme

• is lower censorship (with cutoff type θ∗0) if r(θ) is quasi-unimodal (with conditions

(S) and (C) satisfied at θ∗0),

• is pass/fail if r(θ) is quasi-increasing,

• induces no exclusion if r(θ) is quasi-decreasing, and

• is fully revealing if r(θ) is decreasing on R+.

Proof sketch. The proof of sufficiency is the same as the proof of Proposition 3, with r(θ)

function replaced by the more general function in equation (17).
58Note that for all θ ≥ θ̄, we have r(θ) = −κ(1−F (θ0)) so that R(θ) = R(θ̄)− κ(1−F (θ0))(θ− θ̄) because

f(θ) = 0 and F (θ) = 1.
59This follows from applying exchanges of integrals to

∫ θ

θ0
r(θ̃)dθ̃.
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4.3 Relationship to the Literature

Relationship to the Delegation Literature. As mentioned above, the triplet (fully reveal-

ing test, pass-fail, lower censorship) corresponds to (full delegation, take-it-or-leave-it

offers, threshold delegation) in delegation. Amador and Bagwell (2022) study the prob-

lem of regulating a monopolist without transfers and characterize sufficient conditions

for threshold delegation (i.e., price-cap regulation) to be optimal. I improve upon their

results and obtain weaker sufficient conditions that are also necessary in the linear

delegation case (see Propositions 3 and 4). Importantly, my conditions allow for the bang-

bang allocation induced by pass/fail tests (take-it-or-leave-it delegation) and exclusion

in lower censorship (price-cap allocation). By contrast, their conditions imply a fully

revealing region and need to hold at all possible cutoff types θ0 ∈ [θ, θ̄), thereby ruling

out the optimality of the bang-bang allocation and exclusion (in the absence of a fixed

production cost).

The contribution is meaningful in two ways. On the one hand, pass/fail tests (bang-

bang allocation) and exclusion are ubiquitous in practice. In their setting, the bang-

bang allocation, where the firm either sets the price at the cap or shuts down, is also

common.60 On the other hand, my sufficient conditions in Corollary 3.1 are also easy

to check (because it does not require one to find the θ0) and still weaker than their

conditions. For example, in the quality maximization case (or v(q, θ) = θq − c(q)/2),

their conditions for lower censorship require a quasi-decreasing density, while mine

also include (quasi-)unimodal and (quasi-)increasing densities. See Appendix C for the

comparison and technical details.

In contrast to expertise-based delegation, Kartik, Kleiner and Van Weelden (2021)

study delegation in veto-bargaining and provide necessary and sufficient conditions

for the optimality of interval delegation, full delegation, and no compromise (which

corresponds to the pass/fail test). My results in this special case are consistent with theirs

(see Examples 4.2 and 4.3). However, they assume a specific state-independent principal

preference (with a constant bliss point) and a quadratic agent preference. They also cover

stochastic delegation mechanisms, but they are different from the stochastic ratings in

this paper.

Relationship to the Persuasion Literature. In the linear delegation case, Kolotilin and

Zapechelnyuk (2019) translate it to an equivalent linear persuasion problem and solve it

using methods in Kolotilin (2018) and Dworczak and Martini (2019). My method uses

60In their context, take-it-or-leave-it offers take the form of fixed-price regulation where the firm either
accepts the fixed price or shuts down.
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the optimal control approach that parallels with the Lagrangian approach developed by

Amador, Werning and Angeletos (2006), which allows for nonlinear delegation, where

the principal’s marginal payoff is nonlinear in (a transformation of) the agent’s action. In

this case, in the equivalent persuasion problem, the sender’s payoff is nonlinear in the

state (so that not only the posterior mean matters), so their methods no longer apply.

Relationship to Kleiner et al. (2021). In Section 4.3 of Kleiner, Moldovanu and Strack

(2021), they study optimal delegation with potentially stochastic mechanisms (and

quadratic utilities) as an application of their results on extreme points and majoriza-

tion.61 For example, in the quality maximization case v(q, θ) = q, if c(q, θ) = q2/2θ, an

undominated deterministic allocation q(θ) is incentive-compatible if and only if there

exists an extension q̃(θ) of q(θ) to [θ, θ̄′] such that q̃(θ̄′) = θ̄′ and q̃(θ) is an extreme point of

the mean-preserving contraction (MPC) of

qc(θ) =

qi(θ) = 2θ, if θ ∈ [θ, θL(θ)]

qf (θ) = θ, if θ ≥ θL(θ).

Therefore, the optimality of pass/fail tests (lower censorship) in quality maximization

when the density is increasing (unimodal) directly follows from their Proposition 3.62

4.4 Beyond Lower Censorship

In this subsection, I characterize the optimal deterministic rating schemes beyond lower

censorship. By the revelation principle and Lemma 2, the optimal deterministic rating

can be characterized by the quality scheme it induces. By Lemma 4, the induced quality

scheme consists of pooling and fully revealing intervals and at most countably many

jump discontinuities. Thus, I label the exclusion interval as [θ, θ0], and other pooling

and fully revealing intervals as [θ0, θ1], . . . , [θk−1, θk], where k ≥ 1.63 Denote qj = q(θj+) for

all j ≥ 0. As a convention, denote q−1 = 0 and θ−1 = θ. Thus, (q−1, q0, q1, . . . , qk−1) is an

increasing sequence.

61Their approach can be extended to more general preferences, such as the linear delegation case.
62They also extend the equivalence between delegation and persuasion established by Kolotilin and

Zapechelnyuk (2019) to delegation with stochastic mechanisms and persuasion with general information
structures. However, the rating design problem I consider differs from the Bayesian persuasion setting in
Kolotilin and Zapechelnyuk (2019) where the principal designs the information sent to the agent about the
state (i.e., type). Thus, the rating design problem with stochastic ratings in Section 5 is not equivalent to
stochastic delegation (or persuasion).

63The labeling is possible because q(θ) has at most countably many jumps.
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For any two adjacent pooling intervals [θj−1, θj] (on which q(θ) = qj−1) and [θj, θj+1]

(on which q(θ) = qj), Lemma 4 implies qj−1 − c(qj−1)/θj = qj − c(qj)/θj at the jump θj.

Each jump at θj corresponds to a minimum standard qj > 0 in the rating scheme π.

If a pooling interval is adjacent to a fully revealing interval, q(θ) must be continuous

at the boundary θj of the pooling interval, i.e., qj = qf (θj) on the pooling interval.

Example (Lower censorship). Lower censorship is a special case of k ≤ 2. When k = 2,

[θ, θ0] and [θ0, θ1] are the pooling intervals, and [θ1, θ̄] is the fully revealing interval; q0 is the

only minimum standard. At θ0 > θ, q0 − c(q0)/θ0 = 0 (i.e. q0 = qi(θ0)); at θ1 ≤ θ̄, q0 = qf (θ1)

(i.e. θ1 = θL(θ0)).

Example (Two minimum standards). Assume c(q) = q2/2 and Θ = [0, 5]. Then, an

incentive-compatible quality scheme is q(θ) =



0; θ ∈ [0, 1]

2; θ ∈ [1, 3]

4; θ ∈ [3, 4]

θ; θ ∈ [4, 5]

, which has two jumps (see

Figure 10), so the rating scheme has two minimum standards q0 = 2 and q1 = 4.

Figure 10: Two minimum standards induce q(θ) with two jumps

Beyond lower censorship, the optimal control method can still be applied to solve

for the optimal deterministic rating in general. On the technical side, the Hamiltonian

multiplier µ = 0 must hold at any θj ∈ (θ, θ̄) and on any fully revealing interval. Moreover,

the switching condition needs to hold at any θj ∈ (θ, θ̄) at which q(θ) is discontinuous.

Under Condition LD, define the characteristic function by

rj(θ) = (β(θ)− αθ)f(θ)− α(F (θ)− F (θj)) (19)
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Analogously, define Rj(θ) =
∫ θ

θ
rj(θ̃) dθ̃, Lj(θ|θj) = R(θc(θj))−R(θj)

θc(θj)−θj
, and Aj = Lj(θc(θj)|θj).

I state the following sufficient conditions on the pooling and fully revealing intervals

for the optimal deterministic rating scheme, as extensions of conditions (S) and (C).

Condition (S-j). On any two adjacent pooling intervals [θj−1, θj] (where q(θ) = qj−1) and

[θj, θj+1] (where q(θ) = qj),∫ θ

θj

rj(θ̃)dθ̃ ≥ Aj · (θ − θj) for all θ ∈ [c′(qj−1), c
′(qj)],

with equality if θ ∈ {c′(qj−1), c
′(qj)} ∩ (θ, θ̄).64

Condition (C-j). On any fully revealing interval [θj, θj+1], rj(θ) is decreasing in θ.

I propose the following sufficient conditions on the pooling and fully revealing inter-

vals for the optimal deterministic rating scheme, as extensions of conditions (S) and (C).

Proposition 5. The quality scheme is optimal if conditions (S-j) and (C-j) holds on all

pooling and fully revealing intervals, respectively

Analogous to the case of lower censorship, the sufficient conditions (S-j) and (C-j) are

related to the modes of the density r(θ).

Corollary 5.1. If r(θ) has n ≥ 1 modes, the optimal deterministic rating scheme has at

most n minimum standards.65 If the smallest mode is in the interior of [θ, θ̄], the optimal

deterministic rating scheme must have a minimum standard at the bottom (below which

a “fail” signal is disclosed).

Example (Quality Maximization). Assume v(q, θ) = q (or v(q, θ) = θq − c(q)/2). If f(θ) is

bimodal,66 the optimal deterministic rating can have at most two minimum standards,

that is, high-pass/low-pass/fail.

5 Optimal General (Stochastic) Ratings

5.1 Principal’s Problem

In this section, I study the optimal rating design without the restriction to deterministic

rating schemes. In other words, w(θ) = q(θ) is no longer necessary, and the constraints

64Recall the convention that q−1 = 0 and θ−1 = θ
65When f is constant in some regions, there are potentially many optimal deterministic rating schemes

(or q(θ)), and I consider the one with the fewest minimum standards (or jumps).
66For example, the ability distribution in squadrons in Carrell et al. (2013) is bimodal.
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(MPS) and (BP) must hold instead. With a multiplicatively separable cost function c(q)/θ,

the principal’s problem [P] is

[P] max
q(θ),w(θ)

∫ θ̄

θ

v(q(θ), θ) dF (θ) (20)

subject to, for all θ ∈ [θ, θ̄],

q(θ) increasing (IC-Mon)

θw(θ)− c(q(θ)) =

∫ θ

θ

w(x)dx+ U (IC-Env)

θw(θ)− c(q(θ)) ≥ 0 (IR)∫ θ

θ

w(θ′) dF (θ′) ≥
∫ θ

θ

q(θ′) dF (θ′), (MPS)∫ θ̄

θ

w(θ) dF (θ) =

∫ θ̄

θ

q(θ) dF (θ) (BP)

Define D(θ) =
∫ θ

θ
(w(θ′) − q(θ′)) dF (θ′). In the optimal control problem, I add D(θ)

as a state variable subject to D(θ) ≥ 0 (MPS) with the Lagrangian multiplier λ(θ) ≥ 0

and Ḋ = [w(θ)− q(θ)]f(θ) with the Hamiltonian multiplier Λ(θ). By construction, Λ̇(θ) =

−λ(θ) ≤ 0. The complementary-slackness conditions on (MPS) are λ(θ)D(θ) = 0 and

λ(θ) ≥ 0. See Appendix A.2 for details.

5.2 When are deterministic ratings optimal?

The optimal rating scheme is deterministic if and only if (MPS) holds with equality for all θ.

Thus, we can use a guess-and-verify approach by plugging in the quality scheme induced

by the optimal deterministic rating scheme. As long as the resulting solution satisfies the

complementary-slackness condition λ(θ) ≥ 0 on (MPS), the optimal deterministic rating

scheme remains optimal among general rating schemes.

5.2.1 Quality Maximization

I start with the case where the principal maximizes expected quality, i.e., v(q, θ) = q.

Proposition 6. Assume v(q, θ) = q. The optimal rating scheme is deterministic if f(θ)

is increasing in the exclusion and bunching regions of the optimal deterministic rating
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scheme, while θf ′(θ)/f(θ) (and f(θ)) are decreasing in the fully revealing region of the

optimal deterministic rating scheme.

Remark 6. εf (θ) ≡ θf ′(θ)/f(θ) is the elasticity of f(θ).67 It is decreasing if and only if

f ′′(θ) ≤ f ′(θ)2/f(θ)− f ′(θ)/θ, which relates to the relative concavity of F (θ) and f(θ).68

Remark 7. εf (θ) is decreasing for most well-known unimodal distributions in the de-

creasing region of f(θ), including uniform, exponential, Pareto, log-normal, and normal

distributions, even for distributions that violate monotone hazard rate property and

Myerson’s regularity (e.g., log-normal and Pareto).

The Pareto distribution Par(α, β) has a strictly decreasing density f(θ) = αβαθ−(α+1)

and a constant elasticity θf ′(θ)/f(θ) = −(α + 1). The condition can be violated by

distributions that have heavier tails than Pareto, such as certain Type-II (Fréchet-type)

generalized extreme value distributions.

The proposition implies that the optimality of pass/fail and fully revealing tests is

somewhat robust to stochastic rating schemes.

Corollary 6.1. Assume v(q, θ) = q. The optimal rating scheme is pass/fail if f(θ) is increas-

ing.69 The optimal rating scheme is fully revealing if and only if both f(θ) and θf ′(θ)/f(θ)

are decreasing and θ = 0.

The corollary implies that pass/fail tests remain optimal if types are increasingly

more concentrated towards the top of the distribution. A fully revealing test is optimal if

types are increasingly more concentrated towards the bottom of the distribution and the

elasticity of density is also decreasing, which suggests a relatively thin tail, (and θ = 0).

It is worth noting that lower censorship with nonempty exclusion and fully revealing

regions (e.g., when the density is unimodal) is unlikely to be optimal among stochastic

ratings. To see this, recall from the previous section that the mode of the unimodal f(θ)

is in the bunching region (θ∗0, θL(θ
∗
0)) of the optimal quality scheme. But for it to remain

optimal, the density f(θ) needs to be increasing on the entire bunching region. Thus, a

unimodal density will not satisfy this condition in general.

67Consider 1− F (θ) as the demand function. Then, θf ′(θ)/f(θ) represents the curvature (or convexity)
of the demand function, or the elasticity of the slope of demand, in the industrial organization literature
(see, e.g., Seade (1980); Aguirre et al. (2010); Mrázová and Neary (2017)).

68If f(θ) is strictly decreasing, the condition becomes f ′′(θ)/f ′(θ) ≥ f ′(θ)/f(θ)− 1/θ
69Another sufficient condition is both θ∗0 = θ (i.e., no exclusion) and θ̄ ≤ θc(θ) (i.e., variation in types is

not large enough to sustain a fully revealing region).
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5.2.2 Linear and Nonlinear Delegation

In general, we have the following results in the fully revealing region. Define

N1(θ) =

(
vqq(qf (θ), θ)

c′′(qf (θ))
+ vqθ(qf (θ), θ)

)
θ + vq(qf (θ), θ)

(
1 +

θf ′(θ)

f(θ)

)
. (21)

Example (Linear Delegation). Under Condition LD, N1(θ) = (β′(θ)−α)θ+(β(θ)−αθ)[1+

θf ′(θ)/f(θ)]. When v(q, θ) = q, N1(θ) = 1 + θf ′(θ)/f(θ).

Condition (N1). N1(θ) is decreasing in θ.

Lemma 7. If the optimal deterministic rating scheme fully reveals θ ∈ [θj, θj+1], then the

optimal rating scheme also fully reveals θ ∈ [θj, θj+1] if and only if N1(θ) is decreasing on

[θj, θj+1].

Because it provides a necessary and sufficient condition, the lemma also implies

that if the optimal deterministic rating scheme has a fully revealing region where N1(θ)

is not decreasing, then a stochastic rating scheme can strictly improve upon it (see

Proposition 8).

In the pooling regions [θj−1, θj] and [θj, θj+1], the following condition needs to hold.

Condition (N2). N2(θ) = Aj/f(θ) + κθ + κ(F (θ)− F (θj))/f(θ) is decreasing in θ.

In particular, for lower censorship or pass/fail tests, θj = θ0 and Aj = A(θ0) as defined

in equation (11).70

The following proposition provides sufficient conditions for the optimal rating scheme

to be deterministic.

Proposition 7. The optimal rating scheme is deterministic if the optimal deterministic

rating scheme satisfies (N1) and (N2) in the fully revealing and pooling regions, respectively.

The optimal rating scheme is a pass/fail test if the optimal deterministic rating scheme

is pass/fail and condition (N2) holds on [θ, θ̄].

Proof sketch. Use the same multipliers as in the deterministic ratings (where D(θ) ≡ 0).

Conditions (N1) and (N2) guarantee the Lagrangian multiplier on D ≥ 0 is positive.
70If (θ0, θL(θ0)) = (θ, θ̄) (i.e., bunching without exclusion), the condition can be relaxed to Ñ2(θ) =

κθ + κF (θ)/f(θ) is decreasing.
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5.3 When are stochastic ratings optimal?

Since stochastic ratings expand the set of incentive-compatible quality q(θ), a natural

question is when stochastic ratings are optimal.

By Lemma 7, whenever condition (N1) does not hold in the fully revealing region

of the deterministic rating, stochastic ratings can improve upon deterministic ratings.

When v(q, θ) = q, this means that if the optimal deterministic rating has a fully revealing

region in which the elasticity of density, θf ′(θ)/f(θ), is not decreasing, then it is not

optimal among general (possibly stochastic) rating schemes.

Proposition 8. Stochastic rating schemes can strictly improve on deterministic rating

schemes if the optimal deterministic rating has a fully revealing region in which Condi-

tion (N1) does not hold.

Proof. Follows immediately from Lemma 7.

Intuition. Intuitively, if q′(θ) > 0, one can write c′(q(θ))/θ = ŵ′(q(θ)) ≡ w′(θ)/q′(θ).

Stochastic rating schemes can allow ŵ′(q) > 1 for some qualities to provide stronger

marginal incentives than fully revealing the marginal investment in quality to the market

(i.e., ŵ(q) = q). This can be achieved, for example, by increasing the probability of the

agent’s quality being pooled with higher qualities (or separated from lower qualities).

Consequently, this partial pooling leads to higher q(θ) for some (lower) types at the

expense of lower q(θ) for other (higher) types, which can be more desirable for the

principal under some distributions.71

Example 5.1. Assume v(q, θ) = q and Θ = [0, 1]. If f(θ) is decreasing but the elasticity

εf (θ) = θf ′(θ)/f(θ) is not decreasing (e.g., distributions with heavier tails than Pareto),

then a stochastic rating scheme can strictly improve upon the optimal deterministic

rating scheme (which is fully revealing).

Intuitively, for a decreasing density, its elasticity εf (θ) is not decreasing if it has a very

“fat tail”—that is, there are a few very high types at the top of the distribution. In this case,

it can be beneficial to partially pool low types with high types to induce higher quality

from low types at the cost of incentives for high types.

Similarly, in the pooling region, by partially pooling low types with high types, stochas-

tic rating schemes allow the principal to set a higher minimum standard without discour-

aging participation, in contrast to deterministic rating schemes where a higher minimum

71If Assumption 1 (downward bias) is violated (i.e., qe(θ) < qf (θ)), that is, if the principal wants to induce
a lower quality than the agent would choose under full revelation, stochastic ratings can lead to a more
flexible q(θ) which can be closer to the principal-optimal qe(θ).
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standard leads to more exclusion. Thus, stochastic rating schemes can increase the

incentives for low types at the cost of incentives for higher types, thereby potentially

improve on deterministic schemes.

Example 5.2. Assume v(q, θ) = q, c(q) = q2/2. Assume Θ = [1, 6] and f is decreasing.

Then, the optimal deterministic rating is lower censorship without exclusion and with

a minimum standard q0 = 2, but it is not optimal among general ratings. Here is a

stochastic rating π(q) that improves upon it. Fix q1 > q0. Consider the following noisy

test: if q ≥ q′0

π(q) =

q, with probability 1− p(q)

q1, with probability p(q)
(22)

Otherwise, π(q) = fail for all q < q′0.

Figure 11: A noisy test can potentially improve upon deterministic ratings

By partially pooling low types with high types, the principal can set a higher minimum

standard q′0 > q0, without leading to exclusion, at the cost of incentives for higher types,

which could benefit the principal for some distributions with decreasing densities. See

Figure 11 for an illustration.

Although I provide sufficient conditions under which stochastic rating schemes can

or cannot strictly improve upon deterministic rating schemes, solving for the optimal

rating scheme is more challenging. Because the rating is deterministic if and only if

w(θ) = q(θ), the optimal rating is stochastic on some interval [θ1, θ2] if and only if D(θ) =∫ θ

θ
(w(x)− q(x)) dF (x) > 0 on (θ1, θ2), which by the complementary-slackness conditions,

holds only if λ(θ) = 0 (i.e., (MPS) does not bind).72 The example below shows for quality

72In particular, by Corollary 1.1, if cq(q(θ), θ) ≤ 1 for all θ ∈ [θ, θ̄], then (BP) implies (MPS), and therefore
(MPS) does not bind on [θ, θ̄].
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maximization, (MPS) has to be binding for some types, so the optimal rating must be

deterministic in those regions.

Example (Running example: linear-quadratic). Assume v(q, θ) = q and c(q, θ) = q2/2θ.

θ ∼ Unif [1, 5]. If (MPS) does not bind,

cq(q(θ), θ) = 2 +
1− F (θ)

f(θ)
cθq(q(θ), θ), which is > 1 for large θ.

The solution q(θ) = 0.4θ2 and w(θ) = 8
75
θ3 − 2

75
violate (MPS). Therefore, (MPS) must be

binding in some regions, where the optimal rating must be deterministic.

5.4 With a Constant Testing Fee

To show further cases where stochastic tests can be optimal, I introduce a constant testing

fee P > 0 from the agent to the principal if he takes the test (see Appendix E.3 for details).

With a testing fee, Lemma 1 still holds: an agent takes the test if and only if he chooses

q > 0; if he does not, the market offers w∅ = 0. Denote 1[q] = 1[q > 0]. The principal is

also concerned with expected transfer E[P · 1[q]] in addition to v(q, θ).

Example 5.3 (Optimal certification by a monopoly certifier). In Albano and Lizzeri (2001)

with a constant certification fee P , the agent’s utility is U(θ) = w(θ)−c(q(θ), θ)−P ·1[q(θ)].
The principal maximizes expected certification fee E[P · 1[q(θ)]], so vq(q, θ) = 0. Thus,

ignoring (MPS), we have

cq(q(θ), θ) = 1 +
1− F (θ)

f(θ)
cθq(q(θ), θ) < 1,

Thus, (MPS) is redundant, and the optimal rating is a noisy test because w′(θ)/q′(θ) =

cq(q(θ), θ) < 1.73

Example 5.4 (Optimal certification by a regulator). Suppose instead the principal is a

benevolent certifier who maximizes a weighted sum of the certification fee and the firm’s

(agent’s) profit, that is, E[αP · 1[q(θ)] + (1− α)U(θ)]. Ignoring (MPS), we have

cq(q(θ), θ) = 1 +
2α− 1

α
· 1− F (θ)

f(θ)
cθq(q(θ), θ)

When α ≥ 1/2, cq(q(θ), θ) ≤ 1 always holds, so (MPS) does not bind, and the noisy test

is optimal. When α < 1/2 is small (i.e., the certifier cares more about the firm), (MPS)

73See also Saeedi and Shourideh (2020) and Xiao (2023b).
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becomes binding.

6 Ability Signaling

6.1 Setup

In this section, I consider the alternative case where the market only values the agent’s

exogenous ability, θ, à la Spence’s (1973) signaling model.74 In this case, the interim wage

is ŵ(q) = Es∼π(q)[E[θ|s]]. As before, denote w(θ) = ŵ(q(θ)).

The lemmas for the equivalence to reduced-form direct mechanism and incentive

compatibility still hold. As for feasibility, a theorem similar to Proposition 1 holds.

Theorem 9. An incentive-compatible direct mechanism (q(θ), w(θ)) is feasible if and only

w(θ) is a mean-preserving spread of θ in the quantile space, that is,

(i)
∫ θ

θ
w(θ′) dF (θ′) ≥

∫ θ

θ
θ′ dF (θ′) for all θ ∈ [θ, θ̄] (MPS’),

(ii)
∫ θ̄

θ
w(θ) dF (θ) =

∫ θ̄

θ
θ dF (θ) (BP’).

The theorem can be proven similarly to Proposition 1 à la the proof of Border’s theo-

rem in Kleiner, Moldovanu and Strack (2021, Theorem 3). Within deterministic rating

schemes, it can only be an extreme point the mean-preserving spread of θ in the quantile

space, which is referred to as a “truthful filter” in Rayo (2013). A sufficient condition for

feasibility is given below.

Corollary 9.1. If the incentive-compatible direct mechanism (q(θ), w(θ)) satisfies w′(θ) ≤ 1

on [θ, θ̄], then it is feasible if and only if it satisfies (BP’).

Because the type θ is exogenous, the rating design problem is simpler than the case

where the market values the endogenous quality. On the technical side, because (MPS’)

and (BP’) do not involve the state variable q(θ), the Hamiltonian becomes simpler as

it does not involve pure state constraint. Hence, in this section, I look for the optimal

general (possibly stochastic) ratings directly, without having to start by restricting to

deterministic ratings.

74In the employer example, it is similar to Holmström’s (1999) career concern model, except that agents
know their abilities.
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6.2 Optimal Ratings without Transfers

As in the previous sections, I start by assuming there are no transfers between the prin-

cipal and the agents. Because the test is costless and always gives a result, taking the

test is a strictly dominant strategy for every agent (except the lowest type θ who can be

indifferent), even if he invests no effort (i.e., c(q, θ) = 0). Therefore, every agent partic-

ipates in the test, even if he invests no effort, in contrast to the productive investment

case. Consequently, w∅ = θ.

Lemma 8. In any equilibrium, if an agent does not take the test, he must be the lowest type

θ = θ who chooses q such that c(q, θ) = 0, and the market offers him w∅ = θ.

Assume the cost is multiplicatively separable (see Appendix F.3 for general cost func-

tions). The principal’s problem is

max
q(θ),w(θ)

∫ θ̄

θ

v(q(θ), θ) dF (θ) (23)

subject to (MPS’), (BP’), and

θw(θ)− c(q(θ)) =

∫ θ

θ

w(x) dx+ U, (IC-Env) (24)

q(θ) increasing. (IC-Mon) (25)

θw(θ)− c(q(θ)) ≥ θ · θ, (IR) (26)

Say a rating induces full separation if w(θ) = θ.75 Define qf (θ) as the quality scheme

under full separation, which is characterized by

ŵ(qf (θ)) ≡ w(θ) = θ, (BP)

qf (θ) = argmax
q

{θŵ(q)− c(q)} ⇐⇒ ŵ′(qf (θ)) = c′(qf (θ))/θ, (FOC)

θ − c(qf (θ))/θ = 0. (IR)

The first two conditions imply

c′(qf (θ)) · q′f (θ) = θ, (27)

which, along with the initial condition in (IR), determines qf (θ).

75Cf. the fully revealing test in previous sections that induces ŵ(q) = q (w(θ) = q(θ)) when the market
values quality.
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I also maintain Assumption 1 (downward bias) that yq(qf (θ), θ) ≥ 0. Denote

J(θ|qf ) =
yq(qf (θ), θ)

c′(qf (θ))
θ −

∫ θ̄

θ
yq(qf (x), x)/c

′(qf (x)) dF (x)

f(θ)
(28)

In the linear delegation case where v(q, θ) = β(θ)q−αc(q)+d(θ), the expression simplifies

to

J(θ|qf ) =
β(θ)

c′(qf (θ))
θ −

∫ θ̄

θ
β(x)/c′(qf (x)) dF (x)

f(θ)
− α

(
θ − 1− F (θ)

f(θ)

)
(29)

If the principal maximizes expected quality—i.e., v(q, θ) = q, then J(θ|qf ) = θ
c′(qf (θ))

−∫ θ̄
θ 1/c′(qf (x)) dF (x)

f(θ)
.

Proposition 10. The optimal rating scheme induces full separation (i.e., q∗(θ) = qf (θ)) if

and only if J(θ|qf ) is increasing in θ.

Proof sketch. Rewrite the constraints and apply the optimal control methods to the

principal’s maximization problem. See Appendix A.3 for details.

Remark 8. For v(q, θ) = q, the result is consistent with Rayo (2013) (which assumes

c(q) = q) and Zubrickas (2015, Propositions 2 and 3) but does not restrict attention to

deterministic ratings.

The necessary and sufficient condition regarding J(θ|qf ) is reminiscent of that for the

optimality of winner-take-all contests in Zhang (2024). Indeed, effort maximization in

the ability signaling model is similar to that in contests.

Proposition 10 provides a regularity condition that is necessary and sufficient for

full separation to be optimal. In particular, if v(q, θ) = q and c(q) = q, full separation is

optimal if and only if J(θ) ≡ θ − 1−F (θ)
f(θ)

is increasing.76

Example 6.1. Assume v(q, θ) = q, c(q) = q (as in Rayo (2013)), and θ = 0. Then ŵ(q) =
√
2q

and qf (θ) = θ2/2. The optimal rating induces full separation q∗(θ) = θ2/2 if and only if

J(θ|qf ) = θ − 1−F (θ)
f(θ)

is increasing.

Example 6.2. Assume v(q, θ) = q, c(q) = q2/2, and θ = 0. Then, ŵ(q) = q and qf (θ) = θ.

The optimal rating induces full separation q∗(θ) = θ if and only if J(θ|qf ) = 1−
∫ θ̄
θ 1/xdF (x)

f(θ)

is increasing.

76In the quality maximization case with linear cost, Kleiner et al. (2021, Proposition 2) implies that
optimal rating scheme is always deterministic because the maximum of a linear function is always obtained
at an extreme point.
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The following corollary implies that in the quality maximization case, the optimal

rating induces full separation at the top under some conditions.

Corollary 10.1 (Cf. Zubrickas, 2015, Propositions 2). Assume v(q, θ) = q. If c′(qf (θ))/θ is

decreasing in θ (or equivalently, qf (θ) is convex) on [θL, θ̄] for sufficiently large θL < θ̄, then

the optimal rating induces full separation on [θL, θ̄].

6.3 Optimal Ratings with a Constant Testing Fee

In this section, I assume there is a constant testing fee P ≥ 0 from the agents who take

the test to the principal. With the testing fee, the agent of type θ > θ may not take the

test. If so, he will invest no effort but is still endowed with some ability θ > θ. As is the

natural of signaling games, multiple equilibria can arise, in contrast to the productive

investment case. I will focus on the principal-optimal sequential equilibrium.

Denote the decision dummy by σ(θ) = 1[type θ takes the test].

Lemma 9. There exists a cutoff type θ0 such that σ(θ) = 1 if and only if θ ≥ θ0. Consequently,

w∅ = E[θ | θ ≤ θ0]

Assume the principal maximizes a weighted sum of the certification fee and the

expected quality, that is, E[σ(θ)(ρP +(1−ρ)q(θ))] where ρ ∈ [0, 1]. The principal’s problem

is

max
q,w,θ0

∫ θ̄

θ0

σ(θ)[(1− ρ)q(θ) + ρP ] dF (θ) (30)

subject to (MPS’) and (BP’) on θ ∈ [θ0, θ̄], and

U(θ) ≡ [w(θ)− c(q(θ), θ)− P ]σ(θ) + w∅(1− σ(θ)) = −
∫ θ

θ

σ(x)cθ(q(x), x) dx (IC-Env)

q(θ) increasing (IC-Mon)

U(θ) = [w(θ)− c(q(θ), θ)− P ]σ(θ) + w∅(1− σ(θ)) ≥ 0 (IR)

The following proposition characterizes the optimal rating scheme when the principal

cares sufficiently about the certification fee.

Proposition 11. Assume ρ is sufficiently close to 1 or c(q, θ) is sufficiently convex in q. Then,
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the optimal rating induces the quality scheme q∗(θ) given bycq(q
∗(θ), θ) = 1−ρ

ρ
+ 1−F (θ)

f(θ)
cθq(q

∗(θ), θ) (“≥” if c(q∗(θ), θ) = 0), if θ ≥ θ∗0,

c(q∗(θ), θ) = 0, otherwise,

where the optimal cutoff is

θ∗0 = sup{θ ∈ [θ, θ̄] : (1− ρ)q∗(θ) + (ρ− 1)θ − ρc(q∗(θ), θ) + ρ
1− F (θ)

f(θ)
cθ(q

∗(θ), θ) ≤ 0}.

The optimal certification fee is

P ∗ = E[θ]− E

[
c(q∗(θ), θ)− 1− F (θ)

f(θ)
cθ(q

∗(θ), θ) | θ ≥ θ∗0

]
,

and the optimal rating is a noisy test characterized by the interim wage

w∗(θ) =


∫ θ

θ∗0
cq(q

∗(θ), θ)q∗′(θ) dθ + P ∗, if θ ∈ [θ∗0, θ̄],

E[θ | θ ≤ θ∗0], otherwise,

which satisfies w∗′(θ) = cq(q
∗(θ), θ)q∗′(θ) < 1 when ρ is sufficiently close to 1 or c(q, θ) is

sufficiently convex in q.

Corollary 11.1. When ρ = 1, that is, the principal (e.g., a monopoly certifier) cares only

about the certification fee, the optimal rating is to give the same score to every participant,

thereby inducing no effort (c(q∗(θ), θ) = 0) and full participation (σ∗(θ) = 1 for all θ ∈ [θ, θ̄]).

The optimal fee is P ∗ = E[θ].

Remark 9. The monopoly certifier extracts the entire surplus by setting a certification

fee P ∗ = E[θ], which is reminiscent of the result of Lizzeri (1999), where there is no ability

signaling through effort. There also exist other equilibria where agents invest no effort

and the cutoff is θ∗0 ∈ [θ, θ̄]—in particular, an equilibrium where no agents take the test

(Cf. Lizzeri, 1999; Ali, Haghpanah, Lin and Siegel, 2022).

7 Conclusion

Ratings are often used to motivate agent performance or the firm investment in prod-

uct quality, particularly when monetary transfers are limited. When the market rewards

agents based on the perception of their endogenous quality or exogenous abilities, ratings
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can provide reputational incentives in place of monetary incentives. In this paper, I study

the optimal rating scheme to incentivize agent investment in quality, when they have

private information about their costs of investment. I provide necessary and sufficient

conditions under which pass fail tests and lower censorship are optimal within determin-

istic ratings. Beyond lower censorship, I also solve for the optimal deterministic ratings

for general preferences and distributions. In particular, when the principal’s objective

is expected quality, lower censorship is optimal if and only if types are concentrated

around the mode of the distribution (i.e., density is quasi-unimodal), and pass/fail tests

are optimal if types are concentrated towards the top (i.e., density is quasi-increasing).

The deterministic rating design problem is equivalent to a delegation problem with

voluntary participation (Amador and Bagwell, 2022). My results improve upon the

existing results by providing weaker sufficient conditions for lower censorship (corre-

sponding to threshold delegation) that are also necessary in the linear delegation case.

I also provide necessary and sufficient conditions for pass/fail tests (corresponding to

take-it-or-leave-it offers in delegation) to be optimal. The results allows for general

state-dependent preferences of the principal and nonlinear delegation. Additionally,

through the equivalence established by Kolotilin and Zapechelnyuk (2019), the results

also have implications for the Bayesian persuasion literature, especially in cases where

the sender’s payoffs are nonlinear in the state.

By defining an interim wage function and characterizing the necessary and sufficient

condition for an incentive-compatible direct mechanism to be feasible (i.e., can be

induced by a rating scheme), I use an interim approach to the rating design problem.

The interim approach is particularly useful in solving for the optimal general (possibly

stochastic) rating schemes, as it reduces the rating design problem to the optimization

over interim wage functions rather than ratings themselves.

When stochastic rating schemes are allowed, I also provide sufficient conditions

under which pass/fail tests remain optimal. In the quality maximization case, a pass/fail

test is optimal if the ability density is increasing. Moreover, I identify conditions under

which stochastic ratings can strictly improve on deterministic ratings. For example,

a noisy test that partially pools low quality with high quality enables the principal to

increase the incentives for low types at the cost of incentives for high types, which can

increase the overall expected quality if the ability density has a heavier tail than Pareto

distribution—in other words, they are a few very high ability agents.

Nevertheless, while I provide sufficient conditions for pass/fail tests and lower cen-

sorship to remain optimal, I have not characterized the optimal ratings in general when

stochastic ratings are feasible. Further, in the current model, the market either values

51



the agent’s endogenous quality (i.e., productive investment) or exogenous abilities (i.e.,

ability signaling), but a combination of both cases is not considered. One would expect a

combination of them makes the full revelation of quality more likely to be optimal than

pure productive investment and less likely than pure ability signaling. Moreover, while I

focus on the case where agents can choose quality deterministically, a more general case

where investing effort increases quality stochastically is also worth exploring (e.g., Saeedi

and Shourideh, 2023), where the moral hazard problem becomes more complicated. In

addition, competition among certifiers (i.e., test designers) is also a direction for future

research.
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Appendix A Setup of the Hamiltonian

A.1 Deterministic Ratings (Section 4)

Define U(θ) =
∫ θ

θ
q(x)dx+ U . Rewrite the constraints in [P’] as

θq(θ)− c(q(θ)) = U(θ) (A.1)

U̇ = q(θ) (A.2)

q̇ = ν(θ) ≥ 0 (A.3)

q increasing (A.4)

U(θ), q(θ) ≥ 0 (A.5)

U(θ̄), q(θ̄) free. (A.6)

Set up the Hamiltonian

H = v(q(θ), θ)f(θ) + γ(θ)[θq(θ)− c(q(θ))− U(θ)] + Γ(θ)q(θ) + µ(θ)ν(θ) (A.7)

where U, q are state variables and ν is the control variable; Γ is Hamiltonian multiplier on

U̇ and µ is Hamiltonian multiplier on q̇; γ is the Lagrangian multiplier on U = θq − c(q).77

By the Pontryagin’s maximum principle (Hellwig, 2010, Theorem 4.1),

−∂H

∂q
= −(vqf + γ(θ − c′(q)) + Γ) = µ̇ (A.8)

−∂H

∂U
= γ = Γ̇ (A.9)

∂H

∂ν
= µ ≤ 0, µ(θ) = 0 if q is strictly increasing at θ,78 (A.10)

Γ(θ) ≤ 0, Γ(θ)U(θ) = 0 (A.11)

µ(θ) ≤ 0, µ(θ)q(θ) = 0 (A.12)

Γ(θ̄) = 0, µ(θ̄) = 0. (A.13)

Because c′(qf (θ)) = θ (and thus q̇f (θ) > 0), on the fully revealing region where q(θ) = qf (θ),

we have Γ(θ) = −vq(qf (θ), θ)f(θ).

At θ0, the switching condition (Bryson and Ho, 1975, Chapter 3.7) (see also Clarke,

77Note U = θq − c(q) is a pure state constraint (i.e., containing no control variable). Therefore, the
multipliers Γ and µ can be discontinuous at junction points between intervals on which the pure state
constraint is binding and intervals on which it is not (Seierstad and Sydsaeter, 1977).

78An increasing function q is said to be strictly increasing at θ if q(θ + ε)− q(θ + ε) > 0 for all ε > 0.
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2013, Chapter 22.5 for the hybrid maximum principle)

Γ(θ0+) = Γ(θ0−) (A.14)

H(θ0+) = v(qi(θ0), θ0)f(θ0) + Γ(θ0+)qi(θ0) = H(θ0−) = 0, (A.15)

By Kamien and Schwartz (1971, 2012), sufficiency requires the maximized Hamil-

tonian H̄(q, U, γ, µ,Γ) = maxν H(q, U, ν, γ, µ,Γ) to be concave in (q, U) for given (γ, µ,Γ),

which requires vqqf − γc′′(q) ≤ 0. Define κ = infq,θ{−vqq/c
′′(q)}. Concavity is satisfied if

Γ + κF is increasing.

The proposed multipliers for the Hamiltonian equation (A.7), according to the Pon-

tryagin’s maximum principle, are

Γ(θ) =


−A− κ(F (θ)− F (θ0)), if θ ∈ [θ, θL(θ0)]

−vq(θ, qf (θ))f(θ), if θ ∈ (θL(θ0), θ̄)

0, if θ = θ̄

(A.16)

γ(θ) =

−κf(θ), if θ ∈ [θ, θL(θ0)]

−[vq(θ, qf (θ))f(θ)]
′, if θ ∈ (θL(θ0), θ̄]

(A.17)

and

µ(θ) =


∫ θ0
θ

vq(0, θ̃)f(θ̃) dθ̃ − κθ(F (θ0)− F (θ))− (θ0 − θ)A ≤ 0, if θ ∈ [θ, θ0]

−
∫ θ

θ0
vq(qi(θ0), θ̃)f(θ̃) dθ̃ + κ(θ − θc(θ0))(F (θ)− F (θ0)) + (θ − θ0)A ≤ 0, if θ ∈ (θ0, θL(θ0)]

0, if θ ∈ (θL(θ0), θ̄]

(A.18)

where θc(θ0) ≡ c′(qi(θ0)) and the multiplier

A =
1

θc(θ0)− θ0

∫ θL(θ0)

θ0

vq(qi(θ0), θ) dF (θ). (A.19)

See Appendix C for the comparison with the multipliers proposed by Amador and Bagwell

(2022).
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A.2 General Ratings (Section 5)

Define D(θ) =
∫ θ

θ
(w(θ′) − q(θ′)) dF (θ′) ≥ 0 and U(θ) =

∫ θ

θ
w(x)dx + U . Rewrite the

constraints as

D(θ) ≥ 0 (MPS) (A.20)

Ḋ = [w(θ)− q(θ)]f(θ) (A.21)

θw(θ)− c(q(θ)) = U(θ) (A.22)

U̇ = w(θ) (A.23)

q̇ = ν ≥ 0 (A.24)

U(θ), q(θ) ≥ 0, D(θ) = 0 (A.25)

U(θ̄), q(θ̄) free, D(θ̄) = 0 (BP) (A.26)

Set up the Hamiltonian

H = v(q(θ), θ)f(θ) + γ(θ)[θw(θ)− c(q(θ))− U(θ)] + λ(θ)D(θ)

+Λ(θ)[w(θ)− q(θ)]f(θ) + Γ(θ)w(θ) + µ(θ)ν(θ)
(A.27)

where U, q,D are state variables and w, ν is the control variable; λ(θ) is the Lagrangian

multiplier on D(θ) ≥ 0 (MPS), γ(θ) is the Lagrangian multiplier on U(θ) = θw(θ)− c(q(θ)),

Λ is the Hamiltonian multiplier on Ḋ = [w(θ) − q(θ)]f(θ), and Γ is the Hamiltonian

multiplier on U̇ = w(θ).79

By the Pontryagin’s maximum principle,

−∂H

∂q
= −(vqf − γc′(q)− Λf) = µ̇ (A.28)

−∂H

∂D
= −λ = Λ̇ (A.29)

−∂H

∂U
= γ = Γ̇ (A.30)

∂H

∂w
= θγ + Λf + Γ = 0 (A.31)

∂H

∂ν
= µ ≤ 0, µ(θ) = 0 if q is strictly increasing at θ (A.32)

λ(θ) ≥ 0, λ(θ)D(θ) = 0 (A.33)

Γ(θ) ≤ 0, Γ(θ)U(θ) = 0 (A.34)

79Now D ≥ 0 is a pure state constraint, and U = θw − c(q) is not. Therefore, the multipliers Λ can be
discontinuous at junction points between intervals on which D ≥ 0 is binding and intervals on which it is
not (Seierstad and Sydsaeter, 1977).
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µ(θ) ≤ 0, µ(θ)q(θ) = 0 (A.35)

Γ(θ̄) = 0, µ(θ̄) = 0 (A.36)

Λ(θ̄) no condition. (A.37)

The conditions imply

[θΓ(θ)]′ = θγ + Γ = −Λ(θ)f(θ) (A.38)

µ̇ = −[vq(q(θ), θ)f(θ) + γ(θ)(θ − c′(q)) + Γ(θ)] (A.39)

Λ̇(θ) = −λ(θ) ≤ 0, λ(θ)

∫ θ

θ

(w(θ′)− q(θ′)) dF (θ′) = 0 (A.40)

On the fully revealing region where q(θ) = qf (θ), we have Γ(θ) = −vq(qf (θ), θ)f(θ), as in

the deterministic case.

By Kamien and Schwartz (1971), sufficiency requires the maximized Hamiltonian

H̄(q, U,D, γ, µ,Γ, λ,Λ) = maxν,w H(q, U,D, ν, w, γ, µ,Γ, λ,Λ) to be concave in (q, U,D) for

given (γ, µ,Γ, λ,Λ), which requires vqqf − γc′′(q) ≤ 0. Recall that κ = infq,θ{−vqq/c
′′(q)}.

Concavity is satisfied if Γ + κF is increasing.

A.3 Ability Signaling (Section 6)

The setup of Hamiltonian is almost identical to Appendix A.2, except that the state

equation of D is replaced by Ḋ = [w(θ)− θ]f(θ) due to (MPS’).80 Set up the Hamiltonian

H = v(q(θ), θ)f(θ) + γ(θ)[θw(θ)− c(q(θ))− U(θ)] + λ(θ)D(θ)

+Λ(θ)[w(θ)− θ]f(θ) + Γ(θ)w(θ) + µ(θ)ν(θ)
(A.41)

By the Pontryagin’s maximum principle,

−∂H

∂q
= −(vqf − γc′(q)) = µ̇ (A.42)

−∂H

∂D
= −λ = Λ̇ (A.43)

−∂H

∂U
= γ = Γ̇ (A.44)

∂H

∂w
= θγ + Λf + Γ = 0 (A.45)

∂H

∂ν
= µ ≤ 0, µ(θ) = 0 if q is strictly increasing at θ (A.46)

80Consequently, D ≥ 0 is no longer a pure state constraint.
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λ(θ) ≥ 0, λ(θ)D(θ) = 0 (A.47)

Γ(θ) ≤ 0, Γ(θ)U(θ) = 0 (A.48)

µ(θ) ≤ 0, µ(θ)q(θ) = 0 (A.49)

Γ(θ̄) = 0, µ(θ̄) = 0 (A.50)

Λ(θ̄) no condition. (A.51)

On the fully revealing region where q(θ) = qf (θ), we have γ(θ) = vq(qf (θ), θ)f(θ)/c
′(qf (θ))

and Γ(θ) = −
∫ θ̄

θ
vq(qf (x), x)f(x)/c

′(qf (x))dx, and thus

−Λ(θ) = −θγ + Γ

f
=

vq(qf (θ), θ)θ

c′(qf (θ))
−
∫ θ̄

θ
vq(qf (x), x)f(x)/c

′(qf (x))dx

f(θ)
≡ J(θ|qf ) (A.52)

When J(θ|qf ) = −Λ(θ) is increasing in θ, λ(θ) = −Λ′(θ) ≥ 0.

By Kamien and Schwartz (1971), sufficiency requires vqqf − γc′′(q) ≤ 0. Substituting

γ(θ) = vq(qf (θ), θ)f(θ)/c
′(qf (θ)) into it, we have

vqq(qf (θ), θ)− vq(qf (θ), θ) · c′′(qf (θ))/c′(qf (θ)) ≤ 0, (A.53)

which always holds because vq(qf (θ), θ) ≥ 0 and vqq ≤ 0.

Appendix B Proofs

B.1 Proofs of Section 3

B.1.1 Incentive Compatibility

Lemma B.1. A direct mechanism (q(θ), w(θ)) is incentive compatible if and only if

• q(θ) is increasing, and

• U(θ) ≡ w(θ)− c(q(θ), θ) = −
∫ θ

θ
cθ(q(x), x)dx+ U ,

where U = w(θ)− c(q(θ), θ). These conditions also imply w(θ) is increasing.

Proof. (IC) is θ ∈ argmaxθ̂{w(θ̂) − c(q(θ̂), θ)}. Proof is standard by noting that U(θ) =

maxθ̂{w(θ̂)− c(q(θ̂), θ)}.
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B.1.2 Proof of Corollary 1.1

Proof of Corollary 1.1. Because w(θ) − q(θ) is decreasing, there exists a point θ̂ ∈ [θ, θ̄]

such that w(θ) ≤ q(θ) for all θ > θ̂ and w(θ) ≥ q(θ) for all θ < θ̂ (i.e., w single-crosses

q from above). Thus, D(θ) ≡
∫ θ

θ
(w(θ) − q(θ)) dF (θ) ≥ 0 for all θ < θ̂, and D′(θ) =

(w(θ)− q(θ))f(θ) ≤ 0 for all θ > θ̂. Because D(θ̄) = 0 (BP), we have D(θ) ≥ 0 (MPS).

B.2 Proofs of Section 4

B.2.1 Proof of Lemmas 3–6

Proof of Lemma 3. Under a deterministic rating scheme π, if the rating maps a (poten-

tially singleton) nonempty set of quality to the same score s, only q̂(s) ≡ min{q : π(q) = s}
will be chosen by an agent. Thus, for any q ∈ {q̂(s) : s ∈ π(Q)} (where π(Q) ≡ {π(q) : q ∈
Q}) chosen by an agent, the interim wage is ŵ(q) = E[q̃ | s = π(q)] = q. Therefore, for any

θ ∈ [θ, θ̄], the interim wage is w(θ) ≡ ŵ(q(θ)) = q(θ).

Proof of Lemma 4. Because q(θ) is increasing, it has at most countably many jump dis-

continuities and is differentiable almost everywhere. Assume without loss that q(θ)

is right-continuous, so that the right-derivative q′(θ+) ≡ limh→0+
q(θ+h)−q(θ)

h
always ex-

ists. Then, θ ∈ argmaxθ̂{w(θ̂) − c(q(θ̂))/θ} (IC) implies (c′(q(θ)) − θ)q′(θ) = 0, so either

q(θ) = qf (θ) or q′(θ) = 0.

At each discontinuity, condition 1 and 3 follow from the continuity of U(θ) (because

U(θ) = maxθ̂{q(θ̂)− c(q(θ̂), θ)} is convex, it is absolutely continuous). Condition 2 follows

from the first part (q′(θ) = 0) and continuity of U(θ) (which determines the interval

endpoints).

Proof of Lemma 5. By (IR) and (IC), there exists a cutoff type θ0 ∈ [θ, θ̄] such that U(θ) ≥ 0

if and only if θ ≥ θ0. If θ < θ0, then U(θ) < 0, so the agent chooses q(θ) = 0. If θ > θ0, then

U(θ) < 0 and thus q(θ) > 0. If θ0 ∈ (θ, θ̄) is in the interior, then U(θ0) = 0, so the agent is

indifferent between qi(θ0) and q = 0.

Proof sketch of Lemma 6. If r(θ) is unimodal with mode θm ∈ (θ, θ̄), then R(θ) is convex-

concave on [θ, θ̄] with a reflection point θm. Note that r(θ) = −κ(1 − F (θ0)) ≤ 0 for all

θ ≥ θ̄, so R is decreasing for all θ ≥ θ̄. Therefore, it satisfies conditions (S) and (C) at some

θ0 ∈ (0, θm) such that θc(θ0) ≥ θm.

An increasing r(θ) satisfies condition (S) at some θ0 such that θc(θ0) ≥ θ̄ and thus

satisfies condition (C) vacuously. Note that r(θ) = −κ(1− F (θ0)) ≤ 0 for all θ ≥ θ̄, so R is

decreasing for all θ ≥ θ̄. For any increasing r(θ), ϕ(θ0) ≡ R(θc(θ0))−R(θ0)−(θc(θ0)−θ0)r(θ0)
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is strictly decreasing on θ ∈ [θ−1
c (θ̄), θ̄] because ϕ′(θ0) = θ′c(θ0)r(θc(θ0)) − θ′c(θ0)r(θ0) −

r′(θ0)(θc(θ0)− θ0) < 0. Also, ϕ(θ̄) < 0 and ϕ(θ−1
c (θ̄)) ≥ 0, so ϕ(θ0) = 0 has a unique solution

θ∗0 ∈ [θ−1
c (θ̄), θ̄) such that θc(θ∗0) ≥ θ̄. For θ < θ−1

c (θ̄), there cannot be a θ0 that satisfies (C)

because r(θ) is increasing on [θc(θ0), θ̄].

A decreasing r(θ) satisfies conditions (S) and (C) at θ0 = θ. If θ = 0, then θc(θ) = 0, so a

quasi-decreasing function is decreasing by condition (C).

B.2.2 Proof of Proposition 3

Definition of r(θ) under Condition (LD). To make the notation consistent with the

Hamiltonian in Appendix A.1, I rewrite r(θ) in the general form. Recall that the “relative

concavity” of the principal and agent’s preferences is

κ = inf
q∈Q,θ∈[θ,θ̄]

{−vqq(q, θ)/c
′′(q)} = α, (B.1)

Define

r(θ) = (β(θ)− αθ)f(θ)− α(F (θ)− F (θ0))

=


vq(0, θ)f(θ)− κθf(θ)− κ(F (θ)− F (θ0))

vq(qi(θ0), θ)f(θ)− κ(θ − θc(θ0))f(θ)− κ(F (θ)− F (θ0))

vq(qf (θ), θ)f(θ)− κ(F (θ)− F (θ0)).

Define

L(θ|θ0) =
1

θ0 − θ

∫ θ0

θ

r(θ̃) dθ̃

=


1

θ0−θ

[∫ θ0
θ

vq(0, θ̃)f(θ̃) dθ̃ − κθ(F (θ0)− F (θ))
]
, if θ ∈ [θ, θ0),

1
θ−θ0

[∫ θ

θ0
vq(qi(θ0), θ̃)f(θ̃) dθ̃ − κ(θ − θc(θ0))(F (θ)− F (θ0))

]
, if θ ∈ (θ0, θc(θ0)].

(B.2)

Define the multiplier A = L(θc(θ0)|θ0).
Recall that under Condition (LD), v(q, θ) = β(θ)q − αc(q), so vqq(q, θ) + κc′′(q) = 0.

Proof of Proposition 3. (Sufficiency). First, I show that the point θ0 at which conditions

(S) and (C) hold coincide with the optimal cutoff that satisfies equation (OPT).

Lemma B.2. Conditions (S) and (C) hold at some θ0 if and only if θ0 satisfies equa-

tion (OPT).
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Proof of Lemma B.2. Recall that r(θ) = (β(θ)− αθ)f(θ)− α(F (θ)− F (θ0)). Thus,

v(qi(θ), θ) = β(θ)qi(θ)− αc(qi(θ)) = [r(θ) + α(F (θ)− F (θ0))]
qi(θ)

f(θ)

because c(qi(θ)) = θqi(θ).

If condition (S) holds at some θ0 > 0, then A = r(θ0), so V ′(θ0) = A · qi(θ0) −
v(qi(θ0), θ0)f(θ0) = 0 (OPT). If conditions (S) and (C) hold at θ0 = 0, then V ′(0) =

A(0) · qi(0)− v(qi(0), 0)f(0) ≤ 0 because qi(0) = 0.

Then, I use the optimal control method, where the proposed multipliers are in Sec-

tion A.1. The following necessary conditions need to be verified:

• Condition (S1) guarantees that µ(θ) ≤ 0 on (θ∗0, θL(θ
∗
0)] (in equation (A.18)), so that

q∗(θ) = qi(θ
∗
0) is constant on (θ∗0, θL(θ

∗
0)]. Recall that

µ(θ) =


∫ θ0
θ

vq(0, θ̃)f(θ̃) dθ̃ − κθ(F (θ0)− F (θ))− (θ0 − θ)A ≤ 0, if θ ∈ [θ, θ0]

−
∫ θ

θ0
vq(qi(θ0), θ̃)f(θ̃) dθ̃ + κ(θ − θc(θ0))(F (θ)− F (θ0)) + (θ − θ0)A ≤ 0, if θ ∈ (θ0, θL(θ0)]

0, if θ ∈ (θL(θ0), θ̄]

(B.3)

• Condition (S2) guarantees that µ(θ) ≤ 0 on (θ, θ∗0], so that q∗(θ) = 0 is constant on

(θ, θ∗0].

• Condition (S1) implies that µ(θL(θ∗0)) = 0 (so µ is continuous at θL(θ∗0)), and thus it is

compatible with q(θ) being strictly increasing at θL(θ∗0) (as q(θ) = qf (θ) on [θL(θ
∗
0), θ̄]).

Furthermore, sufficient condition (concavity) requires that Γ + κF is increasing.

• Condition (C) implies Γ + κF is increasing on (θL(θ
∗
0), θ̄] where q∗(θ) = qf (θ).

• The jumps of Γ are nonnegative at θL(θ∗0) by condition (S1) if θL(θ∗0) < θ̄ (by A ≥ 0 if

θL(θ
∗
0) = θ̄) and nonnegative at θ̄ by Assumption 1.

By Lemma B.2, θ∗0 is the optimal cutoff that satisfies the switching condition

H(θ0+) = v(qi(θ0), θ0)f(θ0) + Γ(θ0+)qi(θ0) = H(θ0−) = 0,

where Γ(θ0+) = −A as in equation (A.16).

(Necessity). Necessity can be shown à la Amador and Bagwell (2013, Proposition 2)

using perturbation arguments.
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B.2.3 Proofs of Observations 5–7

Proof of Observation 5. By definition,

A(θ0) =
1

θc(θ0)− θ0

∫ θc(θ0)

θ0

r(θ̃) dθ̃ =
1

θc(θ0)− θ0

∫ θc(θ0)

θ0

vq(qi(θ0), θ) dF (θ)

=
1

θc(θ0)− θ0

∫ θL(θ0)

θ0

vq(qi(θ0), θ) dF (θ).

The second equality follows from integration by parts (see equation (18) for the general

case): ∫ θ

θ0

r(θ̃) dθ̃ =

∫ θ

θ0

[(β(θ̃)− αθ)f(θ̃)− α(F (θ̃)− F (θ0))] dθ̃

=

∫ θ

θ0

vq(qi(θ0), θ̃) dF (θ̃)− κ(θ − θc(θ0))(F (θ)− F (θ0)).

(B.4)

By convention, the CDF F (θ) = 1 for all θ ≥ θ̄ and F (θ) = 0 for all θ ≤ θ. Therefore, the up-

per bound of the integration can be changed from θc(θ0) to θL(θ0) = max{min{θc(θ0), θ̄}, θ}
because F (θ) = 1 on (θL(θ0), θc(θ0)] if θc(θ0) > θL(θ0).

Proof of Observation 6. If vq(qi(θ), θ) ≥ 0 (and ̸≡ 0) for all θ ∈ [θ, θc(θ)], then vq(qi(θ), θ) ≥ 0

for all θ ∈ [θ, θc(θ)], so A(θ) > 0 for all θ ≤ θ. Thus, for all θ0 < θ, f(θ0) = 0 implies

V ′(θ0) = A(θ0)qi(θ0)− v(qi(θ0), θ0)f(θ0) > 0. Hence, θ∗0θ0.

Proof of Observation 7. Recall that κ = infq,θ{−vqq/c
′′(q)}. If vqθ(q, θ) ≤ κ, then d(q, θ) =

v(q, θ)− κ(θq − c(q)) satisfies dqq ≤ 0 and dqθ ≤ 0. Therefore,∫ θL(θ0)

θ0

vq(qi(θ0), θ) dθ =

∫ θL(θ0)

θ0

dq(qi(θ0), θ) dθ +

∫ θL(θ0)

θ0

κ(θ − c′(q)) dθ

≤
∫ θL(θ0)

θ0

dq(qi(θ0), θ) dθ ≤ dq(qi(θ0), θ0)(θL(θ0)− θ0)

≤ d(qi(θ0), θ0)

qi(θ0)
(θL(θ0)− θ0) =

v(qi(θ0), θ0)

qi(θ0)
(θL(θ0)− θ0)

(B.5)

Then, because f is decreasing,∫ θL(θ0)

θ0

vq(qi(θ0), θ)f(θ) dθ ≤ f(θ0)

∫ θL(θ0)

θ0

vq(qi(θ0), θ) dθ

≤ v(qi(θ0), θ0)

qi(θ0)
f(θ0)(θL(θ0)− θ0)

(B.6)
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for all θ0 ∈ (θ, θ̄). Finally, we have

V ′(θ0) ≤

(∫ θL(θ0)

θ0

vq(qi(θ0), θ)

θL(θ0)− θ0
f(θ) dθ − v(qi(θ0), θ0)

qi(θ0)
f(θ0)

)
qi(θ0) ≤ 0 (B.7)

because c′(qi(θ0)) ≥ θL(θ0) > θ0.

B.2.4 Proof of Proposition 4

Proof of Proposition 4. First, I show that the point θ0 at which conditions (S) and (C) hold

coincide with the optimal cutoff that satisfies equation (OPT).

Lemma B.3. r(θ−0 ) ≥ r(θ+0 ) for all θ0 ∈ (θ, θ̄). The equality holds if and only if vqq(q, θ0) +

κc′′(q) = 0 for almost every q ∈ (0, qi(θ0)).

Proof of Lemma B.3. r(θ0+) = vq(qi(θ0), θ0)f(θ0)−κf(θ0)(θ0−θc(θ0)) for all θ0 < θ̄. r(θ0−) =

vq(0, θ0)f(θ0) − κf(θ0)θ0 for all θ0 > θ. r(θ0+) ≤ r(θ0−) follows from vqq(q, θ0) + κc′′(q) ≤
0 on q ∈ (0, qi(θ0)) (because κ = inf{−vqq/c

′′(q)}); the equality holds if and only if

vqq(q, θ0) + κc′′(q) = 0 for almost every q ∈ (0, qi(θ0)).

Lemma B.4. If θ0 > θ, then condition (S) implies r(θ0+) = r(θ0−) = A and vqq(q, θ0) +

κc′′(q) = 0 for almost every q ∈ (0, qi(θ0)).

Proof of Lemma B.4. If θ0 > θ, then conditions (S) implies r(θ0+) = L(θ0+|θ0) ≥ L(θ0−|θ0) =
r(θ0−). By Lemma B.3, we must have r(θ0+) = r(θ0−) = A.

Lemma B.5. Conditions (S) and (C) hold at θ0 if and only if θ0 satisfies equation (OPT).

Proof of Lemma B.5. If θ0 > θ, condition (S) implyL(θ0+|θ0) ≥ L(θ0−|θ0), so by Lemma B.3,

we have L(θ0+|θ0) = L(θ0−|θ0) = A and vqq(q, θ0) + κc′′(q) = 0 for almost every q ∈
(0, qi(θ0)). Thus, A = L(θ0+|θ0) = (v(qi(θ0),θ0)+κc(qi(θ0))

qi(θ0)
− κθ0)f(θ0) = v(qi(θ0),θ0)

qi(θ0)
f(θ0), so

V ′(θ0) = A · qi(θ0)− v(qi(θ0), θ0)f(θ0) = 0 (OPT).

Then, I use the optimal control method, where the proposed multipliers are in Sec-

tion A.1. Condition (S1) guarantees that µ(θ) ≤ 0 on (θ∗0, θL(θ
∗
0)] (in equation (A.18)),

so that q∗(θ) = qi(θ
∗
0) is constant on (θ∗0, θL(θ

∗
0)]. Further, condition (S1) implies that

µ(θL(θ
∗
0)) = 0 (so µ is continuous at θL(θ∗0)), and thus it is compatible with q(θ) being

strictly increasing at θL(θ∗0) (as q(θ) = qf (θ) on [θL(θ
∗
0), θ̄]). Condition (S2) guarantees that

µ(θ) ≤ 0 on (θ, θ∗0], so that q∗(θ) = 0 is constant on (θ, θ∗0].

Sufficient condition (concavity) requires that Γ + κF is increasing. Condition (C)

implies that Γ + κF is increasing on (θL(θ
∗
0), θ̄] where q∗(θ) = qf (θ). The jumps of Γ are
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nonnegative at θL(θ∗0) by condition (S1) if θL(θ∗0) < θ̄ (by A ≥ 0 if θL(θ∗0) = θ̄) and at θ̄ by

Assumption 1.

By Lemma B.5, θ∗0 is the optimal cutoff that satisfies the switching condition

H(θ0+) = v(qi(θ0), θ0)f(θ0) + Γ(θ0+)qi(θ0) = H(θ0−) = 0,

where Γ(θ0+) = −A.

B.2.5 Proof of Proposition 5

To characterize the sufficient conditions, define

rj(θ|q) = vq(q, θ)f(θ)− κf(θ)(θ − c′(q))− κ(F (θ)− F (θj−1)). (B.8)

Abusing notations, for a given allocation q(θ), define rj(θ) = rj(θ|q(θ)).

Proof sketch. Condition (S-j) implies that µ ≤ 0 in the pooling regions and µ = 0 at their

intersections with fully revealing regions. Condition (C-j) guarantees the concavity in the

fully revealing regions.

B.3 Proofs of Section 5

B.3.1 Proof of Lemma 7

Proof of Lemma 7. Fully revealing (q = qf (θ)) implies

Γ(θ) = −vq(qf (θ), θ)f(θ),

and

Λ(θ) = −[θΓ(θ)]′/f(θ) =
vqq(qf (θ), θ)

c′′(qf (θ))
θ+ vqθ(qf (θ), θ)θ+ vq(qf (θ), θ)[1+ θf ′(θ)/f(θ)], (B.9)

which must be decreasing because the Lagrangian multiplier on D is λ(θ) = −Λ′(θ) ≥
0.

B.3.2 Proof of Proposition 7

Proof of Proposition 7. Lemma 7 covers the fully revealing region.

In the pooling regions, the optimal deterministic rating prescribes Γ(θ) = −Aj −
κ(F (θ) − F (θj)), so Λ(θ) = −[θΓ(θ)]′/f(θ) = Aj/f(θ) + κθ + κ(F (θ) − F (θj))/f(θ). In
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the case of lower censorship or pass/fail, if (θ∗0, θL(θ
∗
0)) = (θ, θ̄) (i.e., bunching without

exclusion) where θ∗0 is given by equation (OPT), one can propose A = 0 in the multiplier

Γ. Thus, in lower censorship or pass/fail, Ã(θ0) =
F (θL(θ0))−F (θ0)

θc(θ0)−θ0
·1[(θ0, θL(θ0)) ̸= (θ, θ̄)].

B.3.3 Proof of Corollary 10.1

Proof of Corollary 10.1. qf (θ) is convex if and only if θ/c′(qf (θ)) is increasing in θ. For the

second term of J(θ), J2(θ) = −
∫ θ̄
θ 1/c′(qf (x)) dF (x)

f(θ)
, is increasing in θ for sufficiently large

θL < θ̄ because J ′
2(θ) =

c′(qf (θ))f(θ)+f ′(θ)
∫ θ̄
θ 1/c′(qf (x)) dF (x)

f(θ)2
.

B.3.4 Proof of Proposition 11

Proof of Proposition 11. Substituting σ(θ)P = σ(θ)[w(θ)− c(q(θ), θ)]+ (1−σ(θ))w∅−U(θ)

and w∅ = E[θ | θ ≤ θ0] into the objective, we have

∫ θ̄

θ

σ(θ) [(1− ρ)q(θ) + ρ(w(θ)− c(q(θ), θ))] +

∫ θ0

θ

θ dF (θ)− ρU(θ) dF (θ)

=

∫ θ̄

θ

σ(θ)

[
(1− ρ)q(θ) + ρ(θ − c(q(θ), θ)) + ρ

1− F (θ)

f(θ)
cθ(q(θ), θ)− θ

]
+ E[θ] dF (θ)

Pointwise maximization yields the first-order condition. The solution satisfies (MPS’)

and (BP’) if w′(θ) = cq(q
∗(θ), θ)q∗′(θ) ≤ 1, which holds if ρ is sufficiently large or c(q, θ) is

sufficiently convex in q.

Appendix C Comparison with Amador and Bagwell (2022)

For comparison purposes, I characterize sufficient conditions for lower censorship à la

Amador and Bagwell (2022, henceforth AB).

Truncated problem. They first fix a cutoff θ0 and look at the truncated problem for

θ ≥ θ0. Define

G(θ|θ0) =
1

θL(θ0)− θ

∫ θL(θ0)

θ

vq(θ̃, qi(θ0))f(θ̃)dθ̃−κ
θ − c′(qi(θ0))

θL(θ0)− θ
(1−F (θ))−κ(1−F (θ0)), ∀θ ∈ [θ0, θL(θ0)].

(C.1)

AB’s Proposition 1 proposes the following two conditions.

Condition (AB(i)). G(θ|θ0) ≤ G(θ0|θ0) for all θ ∈ [θ0, θL(θ0)].
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Condition (AB(ii)). vq(θ, qf (θ))f(θ)− κF (θ) is decreasing in θ on (θL(θ0), θ̄].

Observation C.1. If r(θ) = vq(θ, qi(θ0))f(θ) − κ(θ − c′(qi(θ0)))f(θ) − κ(F (θ) − F (θ0)) is

decreasing on [θ0, θL(θ0)] (G’), then G(θ|θ0) is decreasing on θ ∈ [θ0, θL(θ0)], and condi-

tion AB(i) holds.

Condition AB(ii) is exactly the same as condition (C). For Condition AB(i), recall that

condition (S) can be decomposed into conditions (S1) and (S2) on the pooling regions

and exclusion regions, respectively. Condition (S2) has no counterpart in AB’s conditions

because they focus on the truncated problem for θ ≥ θ0. The following observations

show that (S1) is weaker than AB(i).

Observation C.2. Condition AB(i) is equivalent to L(θ|θ0) ≥ L(θL(θ0)|θ0) for all θ ∈
[θ0, θL(θ0)].

Observation C.3. If θc(θ0) = θL(θ0) ≤ θ̄, then condition AB(i) is equivalent to condi-

tion (S1). In general, condition AB(i) is stronger than condition (S1) because θc(θ0) ≥
θL(θ0) = min{θc(θ0), θ̄}.

(a) Satisfies both AB(i) and (S1) (b) Satisfies (S1) but violates AB(i)

Figure C.1: Graphic Illustration of Conditions AB(i) versus Condition (S1)

For example, if r(θ) = f(θ), Figure C.1 illustrates conditions AB(i) and (S1). In the

left panel, the red dashed line represents L(θ0|θc(θ0)) and L(θ0|θL(θ0)) = G(θ0|θ0). They

coincide because θc(θ0) ≤ θ̄ (and hence θc(θ0) = θL(θ0)). For a fixed θ ∈ [θ0, θL(θ0)], the

black dashed line represents L(θ|θ0), while the black dotted line represents G(θ|θ0); the

former has a higher slope than the red dashed line if and only if the latter has a lower slope

than the red line. Thus, condition AB(i) and condition (S1) are equivalent if θc(θ0) ≤ θ̄.
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In the right panel, the purple dashed line represents L(θ0|θL(θ0)), while the red dashed

line represents L(θ0|θc(θ0)). Contrary to the previous case, because θc(θ0) > θ̄ (e.g., if f is

increasing), f satisfies condition (S1) but violates condition AB(i).

On the technical side, the differences between condition AB(i) and condition (S1) is

because I propose a smaller multiplier A. The multiplier à la Amador and Bagwell (2022),

denoted by AAB, is81

AAB ≡ 1

θL(θ0)− θ0

∫ θL(θ0)

θ0

[vq(qi(θ0), θ)f(θ)− κf(θ)(θ − c′(qi(θ0)))− κ(F (θ)− F (θ0))] dθ

=
1

θL(θ0)− θ0

[∫ θL(θ0)

θ0

vq(qi(θ0), θ)f(θ) dθ − κ(θL(θ0)− c′(qi(θ0)))(1− F (θ0))

]
= G(θ0|θ0),

while the multiplier A that I propose is

A =
1

c′(qi(θ0))− θ0

∫ θL(θ0)

θ0

vq(qi(θ0), θ) dF (θ) ≤ AAB, (C.2)

where the equality holds if and only if θL(θ0) = c′(qi(θ0)) (or equivalently, c′(qi(θ0)) ≤ θ̄).

Consequently, their multiplier AAB forces a fully revealing region.

Global problem. Then, for global optimality, AB’s Proposition 2 requires the two condi-

tions in the truncated problem to hold for all θ0 ∈ [θ, θ̄).

Proposition C.1 (Amador and Bagwell, 2022 Propositions 1 and 2). Under Assumption 1,

if conditions AB(i) and AB(ii) hold for all θ0 ∈ [θ, θ̄), the optimal deterministic rating is

lower censorship (without exclusion).

Proof. In the spirit of Amador and Bagwell (2022), fix θ0 ∈ [θ, θ̄) and look at the truncated

problem for θ ≥ θ0. Because condition AB(i) implies condition (S1) with θc(θ0) ≤ θ̄,

while condition AB(ii) is the same as condition (C), Proposition 4.2.4 implies the optimal

quality scheme (in the truncated problem) is

q(θ) =

qi(θ0), if θ ∈ [θ0, θL(θ0))

qf (θ), if θ ∈ [θL(θ0), θ̄].
(C.3)

Because conditions AB(i) and AB(ii) hold for all θ0 ∈ [θ, θ̄), they hold at θ0 = θ in

particular, so the optimal deterministic rating scheme is lower censorship with cutoff

81The trick used in the exchange of integrals is that we have either θL(θ0) = θ̄ or qi(θ0) = qf (θL(θ0)) (or
both), so (θL(θ0)− c′(qi(θ0)))(1− F (θL(θ0))) = 0 always holds.
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θ∗0 = θ.

Remark 10. Condition AB(i) is stronger than condition (S1) because θc(θ0) ≥ θL(θ0) =

min{θc(θ0), θ̄}. Consequently, condition AB(i) implies a fully revealing region (and thus

disallows pass/fail tests in general) by ruling out the possibility that θc(θ0) > θ̄ (e.g., when

r(θ) is increasing).

Remark 11. AB’s Proposition 2 requires conditions AB(i) and AB(ii) to hold for all θ0 ∈
[θ, θ̄). In principle, the conditions need not hold at exclusion levels θ0 that are dominated

(e.g., θ0 = θ̄). As noted in Observation 4, this rules out the possibility of exclusion (and

pass/fail tests in general).82

Appendix D Weaker Sufficient Conditions for Nonlinear

Delegation

Lemma B.3 implies that conditions (S1) and (S2) may not hold simultaneously at θ∗0 > θ

for nonlinear delegation. This calls for weaker sufficient conditions.

To this end, I replace κ by k(q, θ) ≡ −vqq(q, θ)/c
′′(q). Accordingly, the term κF (θ)

in previous analyses (e.g., condition (C) and the multipliers) should be replaced by∫ θ

θ
k(q, θ) dF (θ). For convenience, define G(q, θ) =

∫ θ

θ
k(q, θ) dF (θ)/κ ≥ F (θ) and g(q, θ) =

k(q, θ)f(θ)/κ. Then, it suffices to replace F (θ) and f(θ) by G(q, θ) and g(q, θ) in the equa-

tions above, respectively.

In particular, the key expressions are redefined (with a subscript w to distinguish them

from the original ones) as

Γw(θ) = −A− κ(G(q, θ)−G(q, θ0)), if θ ∈ [θ, θL(θ0)]. (D.1)

rw(θ) =


vq(0, θ)f(θ)− κg(0, θ)θ − κ(G(0, θ)−G(0, θ0)), if θ ∈ [θ, θ0)

vq(qi(θ0), θ)f(θ)− κg(qi(θ0), θ)(θ − θc(θ0))− κ(G(qi(θ0), θ)− F (θ0)), if θ ∈ [θ0, θc(θ0))

vq(qf (θ), θ)f(θ)− κ(F (θ)− F (θ0)), if θ ∈ [θL(θ0), θ̄].

(D.2)
82The price-cap allocation in AB still has exclusion because they assume a fixed production cost.
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and Rw(θ) =
∫ θ

θ
rw(θ̃) dθ̃.

Lw(θ|θ0) =
R(θ0)−R(θ)

θ0 − θ

=

 1
θ0−θ

∫ θ0
θ
[vq(0, θ̃)f(θ̃)− κg(0, θ̃)θ̃ − κ(G(0, θ)−G(0, θ0))]dθ̃, if θ ∈ [θ, θ0)

1
θ−θ0

∫ θ

θ0
[vq(q0, θ̃)f(θ̃)− κg(q0, θ̃)(θ̃ − c′(q0))− κ(G(q0, θ)−G(q0, θ0))] dθ̃, if θ ∈ (θ0, θc(θ0)]

where q0 = qi(θ0).

Accordingly, Conditions (S*) (including (S1*) and (S2*)) are weaker due to the rede-

fined rw(θ) and Lw(θ|θ0) functions.

Condition (S*).
∫ θ

θ0
rw(θ̃)dθ̃ ≥ A · (θ − θ0) for all θ ∈ [θ, θL(θ0)], with equality at θ = θc(θ0).

Condition (S1*). Lw(θ|θ0) ≥ Lw(θc(θ0)|θ0) = A for all θ ∈ (θ0, θL(θ0)].

Condition (S2*). Lw(θ|θ0) ≤ Lw(θc(θ0)|θ0) = A for all θ ∈ [θ, θ0).

Condition (C*). rw(θ) = vq(qf (θ), θ)f(θ)− κG(qf (θ), θ) is decreasing in θ on (θL(θ0), θ̄].

Observation D.1. Condition (C) implies (C*).

The weakened conditions (S1*) and (S2*) can now hold simultaneously at θ∗0 > θ even

if vqq(q, θ0) + κc′′(q) ̸= 0 for some q ∈ (0, qi(θ0)).

Lemma D.1. Conditions (S1*) and (S2*) can hold simultaneously at θ∗0 > θ given by

equation (OPT) if and only if vq is more convex than c′(q), i.e., yqqq/vqq ≥ c′′′(q)/c′′(q).

Proof. If −yqqq/vqq ≤ −c′′′(q)/c′′(q), then k′(q) = − c′′(q)yqqq−c′′′(q)vqq
c′′(q)2

≥ 0, and therefore

z(q) = vq(q, θ0)− k(q, θ0)(θ0 − c′(q0)) is increasing in q. Thus, rw(θ0+) ≥ rw(θ0−) (contrary

to Lemma B.3).

Proposition D.1. The optimal deterministic rating scheme

• is lower censorship with cutoff θ∗0 if conditions (S*) and (C*) are satisfied at θ∗0;

• is pass/fail if conditions (S*) is satisfied at θ∗0 such that θc(θ∗0) ≥ θ̄;

• has no exclusion (and is fully revealing if θ = 0) if conditions (S) and (C) are satisfied

at θ∗0 = θ.
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Appendix E Optimal Ratings with Transfers

E.1 Type-Contingent Transfers

In this subsection, I consider a contingent transfer t(θ) ∈ R from the agent to the principal

(t(θ) < 0 denotes a net transfer from the principal to the agent). I will show that, as soon

as the envelope equation and Bayesian plausibility E[w(θ)] = E[q(θ)] is substituted into

the principal’s objective, the problem reduces to a classical mechanism design problem

with transfers (e.g., Baron and Myerson, 1982; Laffont and Tirole, 1993, Chapter 1).

Assume the shadow cost of transfers is λ ≥ 0, which can also be interpreted as the

principal’s weight of transfers t(θ) relative to v(q, θ) in her objective. In an alternative

case where the principal is subject to the weak budget-balance constraint E[t(θ)] ≥ 0, the

constant λ ≥ 0 can be interpreted as the Lagrangian multiplier on the constraint.83

Focus on a feasible direct mechanism (q(θ), w(θ), t(θ)), where w(θ) = Es∼π(q(θ))[E[q|s]].
The principal’s problem becomes

max
q,w,t

∫ θ̄

θ

v(q(θ), θ) + (1 + λ)t(θ) dF (θ) (E.1)

subject to (IC), (IR), (MPS), and (BP). With transfers, the agent’s utility in (IC) and (IR)

becomes U(θ̂|θ) = w(θ̂)− c(q(θ̂), θ)− t(θ̂), so the envelope condition is given by

w(θ)− c(q(θ), θ)− t(θ) = −
∫ θ

θ

cθ(q(x), x)dx (E.2)

Because we have a contingent transfer t(θ), the standard method applies—i.e., substitut-

ing the envelope equation to the objective and then doing pointwise maximization. By

E[w(θ)] = E[q(θ)] (BP), we have

cq(q
∗(θ), θ) = 1 +

1

1 + λ
vq(q

∗(θ), θ) +
1− F (θ)

f(θ)
cθq(q

∗(θ), θ) (E.3)

which satisfies

cq(q
∗(θ), θ) < cq(q

FB(θ), θ) = 1 + vq(q
FB(θ), θ). (E.4)

Thus, q∗(θ) < qFB(θ). There are two sources of distortions: 1−F (θ)
f(θ)

cθq(q, θ) < 0 and 1
1+λ

≤ 1

(because λ ≥ 0).

Lemma E.1. Two pairs of rating schemes with contingent transfers {π1(θ), t1(θ)} and
83In this case, λ is endogenously determined by the constraint, whereas in the former case, λ is exoge-

nously given.
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{π2(θ), t2(θ)} induce the same quality scheme q(θ) if w1(θ) − t1(θ) = w2(θ) − t2(θ), where

wi(θ) = ŵi(q(θ)) ≡ Es∼πi(q(θ))[E[q|s]] is induced by πi.

With contingent transfers t(θ), the choice of ratings π (or w(θ)) no longer matters

because t(θ) can be used to provide incentives through redistribution in place of w(θ).

In other words, any rating π can be optimal as long as the transfer t(θ) is calibrated

according to the induced w(θ) such that (IC) as in equation (E.2) is satisfied. Thus, it is

without loss to consider a fully revealing test π̄ that induces ŵ(q) = q, in which case the

optimal transfer is

t∗(θ) = q∗(θ)− c(q∗(θ), θ) +

∫ θ

θ

cθ(q
∗(x), x)dx (E.5)

Proposition E.1. With contingent transfer, the optimal mechanism is a fully revealing test

and a transfer t∗(θ) that satisfies the envelope equation (E.2).

In the extreme case where λ → ∞, that is, the principal cares only about the transfer

(i.e., certification fee), we have cq(q
∗(θ), θ) = 1 + 1−F (θ)

f(θ)
cθq(q

∗(θ), θ) (Albano and Lizzeri,

2001).

Of course, if one imposes some restrictions on the contingent transfers, such as the

strong budget balance (E[t(θ)] = 0) or one-sided transfers (t(θ) ≥ 0 or t(θ) ≤ 0), the

choice of ratings will matter again. I shall focus on the restriction of constant transfers.

E.2 Constant Transfers in Deterministic Ratings

With a constant transfer t(θ) = t ∈ R from the agent to the principal (t(θ) < 0 denotes a

net transfer from the principal to the agent), the indifference quality qi(θ; t) is now given

by

−t+ qi(θ; t)− c(qi(θ; t))/θ = 0 (E.6)

Therefore,
dqi(θ; t)

dt
= − 1

c′(qi(θ; t))/θ − 1
< 0. (E.7)

It is strictly negative because c′(qi(θ; t)) > c(qi(θ; t))/qi(θ; t) > c(qi(θ; t))/[qi(θ; t) − t] = θ.

The second-order derivative is d2qi(θ;t)
dt2

= c′′(qi(θ;t))/θ
c′(qi(θ;t))/θ−1

dqi(θ;t)
dt

< 0. Thus,

dqi(θ; t)

dt
+ 1 ≥ 0 ⇐⇒ c′(qi(θ; t)) ≥ 2θ. (E.8)

Example E.1. Assume quadratic cost c(q) = q2/2. Then, qi(θ; t) = θ +
√
θ2 − tθ ≥ 2θ ⇐⇒
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t ≤ 0 ⇐⇒ dqi(θ;t)
dt

+ 1 ≥ 0. Assume the principal assigns the same weight for the quality q

and transfers t, that is, the objective is q+ t. Then, for each type θ for whom the (IR) binds

and chooses qi(θ; t), the optimal transfer (fee or subsidy) t∗ is given by c′(qi(θ; t
∗)) = 2θ,

which is zero given the quadratic cost. For more convex costs, t∗ > 0 is a fee. For more

concave costs, t∗ < 0 is a subsidy.

In general, a subsidy (fee) has three effects on the principal’s expected payoff:

(i) increasing (decreasing) the quality qi(θ; t) for all θ ∈ [θ0, θL(θ0)],

(ii) increasing the total subsidy (fee) to all θ ≥ θ0, and

(iii) changing the optimal cutoff type θ∗0 and thus θL(θ∗0).

While the direction of the third effect is ambiguous, a fee (t > 0) will lead to higher

minimum exclusion. Define the minimum exclusion θmin(t) by

qf (θmin; t) = qi(θmin; t) ⇐⇒ −t+ qf (θmin; t)− c(qf (θmin; t))/θmin = 0, (E.9)

where c′(qf (θ; t)) = θ. When there is no transfer, θmin(0) = 0 because c(q)/q ≥ 0 by the

convexity of c(q) and c(0) = c′(0) = 0 (with equality if and only if q = 0). Thus, θmin(t) ≥ 0

if and only if t ≥ 0. Moreover,

θ′min(t) =
θ2min

c(qf (θmin; t))
> 0. (E.10)

Example (Quadratic cost). When c(q) = q2/2, the minimum exclusion is θmin(t) = 2t.

The principal can design a minimum standard to induce a higher exclusion θ0 ≥ θmin

but not any lower. Assume the principal’s objective is (1− α)v(q, θ) + αt. The principal’s

expected payoff is

V (θ0; t) =

∫ θL(θ0)

θ0

((1− α)v(qi(θ0), θ) + αt) dF (θ) +

∫ θ̄

θL(θ0)

((1− α)v(qf (θ), θ) + αt) dF (θ).

(E.11)

The optimal t and θ∗0(t) are given by

max
t∈R, θ0∈Θ

V (θ0; t) s.t. θ0 ≥ θmin(t). (E.12)

In the quality maximization case v(q, θ) = q, this means that the optimal rating can have

exclusion (and thus can be pass/fail) even if the f(θ) is decreasing.
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Quality Maximization. Assume v(q, θ) = q so that the principal maximizes (1−α)q+αt.

By the envelope theorem,

dV (θ∗0(t); t)

dt
=

∫ θL(θ
∗
0)

θ0

(1− α)vq(qi(θ
∗
0; t), θ)

dqi(θ
∗
0; t)

dt
dF (θ) + α(1− F (θ∗0))− λθ′min(t)

= (1− α)(F (θL(θ
∗
0))− F (θ0))

dqi(θ
∗
0; t)

dt
+ α(1− F (θ∗0))− λθ′min(t)

= −(1− α)(F (θL(θ
∗
0))− F (θ0))

θ

c′(qi(θ∗0; t))− θ
+ α(1− F (θ∗0))− λθ′min(t)

(E.13)

In general, if the optimal test is lower censorship, a fee/subsidy t can potentially

change the structure of lower censorship—it will change θ∗0 and thus θL(θ∗0).

Example E.2 (Quadratic cost). Assume c(q) = q2/2. Assume the constraint on θ0 ≥ 2t is

not binding (λ = 0), either because t is a subsidy (t < 0) or a small fee. If the optimal test

is pass/fail, then the first-order condition c′(qi(θ; t
∗)) = θ/α implies the optimal transfer is

t∗ = (2α− 1)θ/α2. When α ≥ 1/2 (α ≤ 1/2), that is, the principal puts more (less) weight

on transfer than the quality, the optimal transfer t∗ ≥ 0 (t∗ ≤ 0) is a fee (subsidy).

Monopoly Certifier. Assume the principal maximizes the expected certification fee

(α = 1), i.e., V (θ0, t) = t(1− F (θ0)). Because the principal cannot benefit from any higher

exclusion, θ0(t) = θmin(t) must be binding; therefore, θ′0(t) =
θ2min

c(qf (θmin;t))
. Thus, the optimal

fee t∗ is given by

dV (θ0, t)

dt
= (1− F (θ0))− t∗f(θ0)θ

′
0(p

∗) ≤ 0,
dV (θ0, t)

dt
· (θ0(t∗)− θ) = 0. (E.14)

Example E.3 (Quadratic cost). If c(q) = q2/2, then θ0(t) = 2t. Thus, the optimal exclusion

is given by 1−F (θ∗0)

f(θ∗0)
= θ∗0 and the optimal transfer (certification fee) is t∗ = θ∗0/2.

E.3 Constant Transfers in General Ratings

Denote the dummy decision variable that the agent of type θ takes the test by σ(θ) =

1[θ takes the test]. Assume that the principal’s objective is v(q, θ) + σ(θ)αP where P ≥ 0

is the testing fee. The principal’s problem is

max
q,w,P,σ

∫ θ̄

θ

((1− α)v(q(θ), θ) + αPσ(θ)) dF (θ) (E.15)
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subject to

σ(θ)[w(θ)− c(q(θ), θ)− P ] = −
∫ θ

θ

σ(x)cθ(q(x), x) dx (IC-Env) (E.16)

q(θ) increasing (IC-Mon) (E.17)

σ(θ) ∈ {0, 1} increasing (E.18)

w(θ)− c(q(θ), θ)− P ≥ 0 (IR) (E.19)∫ θ̄

θ

σ(θ)w(θ) dF (θ) =

∫ θ̄

θ

σ(θ)q(θ) dF (θ) (BP) (E.20)∫ θ′

θ

σ(θ)w(θ′) dF (θ′) ≥
∫ θ

θ

σ(θ′)q(θ) dF (θ′), ∀θ ∈ Θ (MPS) (E.21)

Lemma E.2. If σ(θ) = 0, then q(θ) = 0, and the market offers w∅ = 0.

Lemma E.3. There exists a cutoff type θ0 such that σ(θ) = 1 if and only if θ ≥ θ0.

Define D(θ) =
∫ θ

θ
(w(θ′)−q(θ′)) dF (θ′) ≥ 0 and U(θ) = −

∫ θ

θ0
cθdx. Given the cutoff type

θ0, the principal’s problem can be rewritten as

max
q,w,P

∫ θ̄

θ0

(1− α)v(q(θ), θ) + α(w(θ)− c(q(θ), θ)− U(θ)) dF (θ) (E.22)

subject to

D(θ) ≥ 0 (MPS) (E.23)

Ḋ = [w(θ)− q(θ)]f(θ) (E.24)

w(θ)− c(q(θ), θ)− P = U(θ) (E.25)

U̇ = −cθ (E.26)

q̇ = ν ≥ 0 (E.27)

U(θ) ≥ 0 (E.28)

D(θ̄) = 0 (BP), U(θ̄), q(θ̄) free. (E.29)

Set up the Hamiltonian

H = [v(q(θ), θ) + w(θ)− c(q(θ), θ)− U(θ)]f(θ) + γ(θ)[(w(θ)− c(q(θ), θ)− P )− U(θ)]

+λ(θ)D(θ) + ϕ(θ)U(θ) + Λ(θ)[w(θ)− q(θ)]f(θ)− Γ(θ)cθ + µν(θ)
(E.30)

where U, q,D are state variables and w, ν are the control variable; λ(θ) is the Lagrangian
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multiplier on D(θ) ≥ 0 (MPS), γ(θ) is the Lagrangian multiplier on U(θ) = w(θ)−c(q(θ), θ),

Λ is the Hamiltonian multiplier on Ḋ = [w(θ) − q(θ)]f(θ), and Γ is the Hamiltonian

multiplier on U̇ = −cθ.

By the Pontryagin’s maximum principle,

−∂H

∂q
= −(vqf − (f + γ)cq − Λf − Γcθq) = µ̇ (E.31)

−∂H

∂D
= −λ = Λ̇ (E.32)

−∂H

∂U
= f + γ − ϕ = Γ̇ (E.33)

∂H

∂w
= f + γ + Λf = 0 (E.34)

∂H

∂ν
= µ ≤ 0, µν = 0 (E.35)

Λ(θ̄) no condition, Γ(θ̄) = 0. (E.36)

When α = 1,

cq(q(θ), θ) = 1/α +
1− F (θ)

f(θ)
cθq(q(θ), θ) < 1,

so (MPS) does not bind, and w(θ) = cq(q(θ), θ)q
′(θ) < q′(θ) implies a noisy test.

[TBA]

Appendix F General Cost Functions

In this section, I consider general cost functions c(q, θ) that satisfies cq > 0, cθ < 0, cqq > 0,

cqθ < 0. The assumption that zero investment has no cost can be weakened to: for any

θ ∈ [θ, θ̄], there exists q(θ) ∈ Q such that c(q(θ), θ) = cq(q(θ), θ) = 0. Hence, Lemma 1

becomes

Lemma F.1 (Cf. Lemma 1). In any equilibrium, if an agent of type θ does not take the test,

he chooses q = q(θ) such that c(q(θ), θ) = 0, and the market offers him ω(∅) = q(θ).

In particular, with a slight abuse of notation, I will also focus on a commonly used cost

function c(q, θ) = c(q − θ).84 This specification has a realistic interpretation that a type-θ

agent is endowed with quality θ and can invest effort e ≥ 0 at the cost c(e) to achieve

quality q = θ + e. When the market values quality q (type θ), this effort is productive

(manipulative). Assume c′ > 0, c′′ > 0, c′′′ ≥ 0, c(0) = c′(0) = 0.

84For example, in Laffont and Tirole (1993); Augias and Perez-Richet (2023); Perez-Richet and Skreta
(2022)
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For general cost functions, the fully revealing quality qf (θ) is given by

cq(qf (θ), θ) = 1. (F.1)

The no-effort quality q(θ) is given by

c(q(θ), θ) = 0. (F.2)

The indifference quality qi(θ) is given by

qi(θ)− c(qi(θ), θ) = q(θ). (F.3)

Particularly, for the specification c(q, θ) = c(q − θ), we have

c′(qf (θ)− θ) = 1 =⇒ qf (θ) = θ + ef (F.4)

c(q(θ)− θ) = 0 =⇒ q(θ) = θ (F.5)

qi(θ)− θ = c(qi(θ)− θ) =⇒ qi(θ) = θ + ei (F.6)

where ef = c′−1(1) and ei > 0 is the unique fixed point of c(e) on R++ (ei = c(ei) > ef ).

F.1 Deterministic Ratings

The principal’s problem is

max
q(θ)

∫ θ̄

θ

v(q(θ), θ) dF (θ) (F.7)

subject to

q(θ)− c(q(θ), θ) ≥ 0 (IR) (F.8)

q(θ)− c(q(θ), θ) = −
∫ θ

θ

cθ(q(x), x)dx+ U (IC-Env) (F.9)

q(θ) increasing (IC-Mon) (F.10)

Rewrite the constraints and set up the Hamiltonian

H = v(q(θ), θ)f(θ) + γ(θ)[q(θ)− c(q(θ), θ)− U(θ)]− Γ(θ)cθ + µ(θ)ν(θ) (F.11)
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By the Pontryagin’s maximum principle,

−∂H

∂q
= −(vqf + γ(1− cq)− Γcθq) = µ̇ (F.12)

−∂H

∂U
= γ = Γ̇ (F.13)

∂H

∂ν
= µ ≤ 0, µ(θ) = 0 if q is strictly increasing at θ, (F.14)

Γ(θ) ≤ 0, Γ(θ)U(θ) = 0 (F.15)

µ(θ) ≤ 0, µ(θ)q(θ) = 0 (F.16)

Γ(θ̄) = 0, µ(θ̄) = 0. (F.17)

Fully revealing q = qf (θ) =⇒

Γ =
vq(qf (θ), θ)

cθq(qf (θ), θ)
f(θ). (F.18)

Now assume throughout the subsection that c(q, θ) = c(q − θ) and denote e(θ) = q(θ)− θ.

Therefore,

qf (θ) = θ + ef (F.19)

q(θ) = θ (F.20)

qi(θ) = θ + ei (F.21)

where ei > ef > 0 are constants. Then, fully revealing q = qf (θ) =⇒

Γ(θ) = −vq(qf (θ), θ)

c′′(ef )
f(θ). (F.22)

By Kamien and Schwartz (1971), sufficiency requires

vqqf − γc′′(e(θ)) + Γc′′′(e(θ)) ≤ 0 (F.23)

which holds if Γ · c′′(e(θ)) is decreasing because vqqf ≤ 0 and Γ · c′′′(e(θ)) ≤ 0.

[TBA]

Condition (C’). r(θ) ≡ vq(qf (θ), θ)f(θ) is decreasing in θ on (θL(θ0), θ̄].

Proposition F.1. If condition (C’) holds at θ0 = θ, then the optimal deterministic rating is

lower censorship without exclusion.

Corollary F.1.1 (Quality maximization). Assume v(q, θ) = q. The optimal deterministic

rating is lower censorship without exclusion if and only if f(θ) is decreasing.
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Figure F.1: q∗(θ) under lower censorship (without and with exclusion) and pass/fail

A linear-quadratic example. Assume v(q, θ) = q and c(e) = e2/2. Then, ef = 1 and

ei = 2; thus, q(θ) = θ, qf (θ) = θ + 1, qi(θ) = θ + 2, and θc(θ0) = θ0 + 1.

Note that lower censorship or pass/fail tests that lead to exclusion are never optimal

because a “low-pass” minimum standard at θ0 can always increase the quality of the

types [max{θ0 − 1, θ}, θ0].
The optimal cutoff θ∗0 is given by

F (θ∗0 + 1)− F (θ∗0 − 1) ≤ 2f(θ∗0), [F (θ∗0 + 1)− F (θ∗0 − 1)− 2f(θ∗0)](θ
∗
0 − θ) = 0. (F.24)

If f(θ) is decreasing, θ∗0 = θ is optimal because F (θ0 + 1)− F (θ0 − 1) ≤ 2f(θ0). Thus, the

optimal deterministic rating is lower censorship without exclusion.

If f(θ) is increasing, multiple jumps in q(θ) is optimal because F (θ0 + 1)− F (θ0 − 1) ≥
2f(θ0) for all θ0 ≤ θ̄ − 1. For example, F (θ) = θ2/θ̄2 and Θ = [0, 3], the optimal cutoff is

θ∗0 = 3 and θ∗0 = 1. The optimal deterministic rating has a “low-pass” minimum standard

q0 = 2 and a “high-pass” minimum standard q0 = 4.

If θ ∼ Unif [θ, θ̄], because F (θ0 + 1) − F (θ0 − 1) = 2f(θ0), optimal quality schemes

include both forms (and many more).

F.2 General Ratings

The principal’s problem is

max
q(θ),w(θ)

∫ θ̄

θ

v(q(θ), θ) dF (θ) (F.25)
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subject to

w(θ)− c(q(θ), θ) = −
∫ θ

θ

cθ(q(x), x)dx+ U (IC-Env) (F.26)

q(θ) increasing (IC-Mon) (F.27)

w(θ)− c(q(θ), θ) ≥ 0 (IR) (F.28)∫ θ̄

θ

w(θ) dF (θ) =

∫ θ̄

θ

q(θ) dF (θ) (BP) (F.29)∫ θ

θ

w(θ′) dF (θ′) ≥
∫ θ

θ

q(θ) dF (θ′), ∀θ ∈ Θ (MPS) (F.30)

Define D(θ) =
∫ θ

θ
(w(θ′)− q(θ′)) dF (θ′) ≥ 0 and U(θ) = −

∫ θ

θ
cθ(q(x), x)dx+ U . Rewrite the

constraints as

D(θ) ≥ 0 (MPS) (F.31)

Ḋ = [w(θ)− q(θ)]f(θ) (F.32)

w(θ)− c(q(θ), θ) = U(θ) (F.33)

U̇ = −cθ(q(θ), θ) (F.34)

q̇ = ν ≥ 0 (q increasing if q̇ does not exist) (F.35)

U(θ), q(θ) ≥ 0, D(θ) = 0 (F.36)

U(θ̄), q(θ̄) free, D(θ̄) = 0 (BP) (F.37)

Set up the Hamiltonian

H = v(q(θ), θ)f(θ) + γ(θ)[w(θ)− c(q(θ), θ)− U(θ)] + λ(θ)D(θ)

+Λ(θ)[w(θ)− q(θ)]f(θ)− Γ(θ)cθ + µ(θ)ν(θ)
(F.38)

where U, q,D are state variables and w, ν are the control variable; λ(θ) is the Lagrangian

multiplier on D(θ) ≥ 0 (MPS), γ(θ) is the Lagrangian multiplier on U(θ) = w(θ)−c(q(θ), θ),

Λ is the Hamiltonian multiplier on Ḋ = [w(θ) − q(θ)]f(θ), and Γ is the Hamiltonian

multiplier on U̇ = −cθ(q(θ), θ).

By the Pontryagin’s maximum principle,

−∂H

∂q
= −(vqf − γcq − Λf − Γcθq) = µ̇ (F.39)

−∂H

∂D
= −λ = Λ̇ (F.40)
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−∂H

∂U
= γ = Γ̇ (F.41)

∂H

∂w
= γ + Λf = 0 (F.42)

∂H

∂ν
= µ ≤ 0, µ(θ) = 0 if q is strictly increasing at θ (F.43)

λ(θ) ≥ 0, λ(θ)D(θ) = 0 (F.44)

Γ(θ) ≤ 0, Γ(θ)U(θ) = 0 (F.45)

µ(θ) ≤ 0, µ(θ)q(θ) = 0 (F.46)

Γ(θ̄) = 0, µ(θ̄) = 0 (F.47)

Λ(θ̄) no condition. (F.48)

Thus,

Γ̇ = γ = −Λ(θ)f(θ) (F.49)

µ̇ = −Γ̇(θ)(1− cq)− vq(q(θ), θ)f(θ) + Γ(θ)cθq (F.50)

Λ̇(θ) = −λ(θ) ≤ 0, λ(θ)

∫ θ

θ

(w(θ′)− q(θ′)) dF (θ′) = 0 (F.51)

[TBA]

F.3 Ability Signaling

Assume the cost function is c(q, θ). Define qf (θ) as the quality scheme under full separa-

tion, which is characterized by

ŵ(qf (θ)) ≡ w(θ) = θ, (BP)

ŵ′(qf (θ)) = cq(qf (θ), θ) (FOC)

θ − c(qf (θ), θ) = 0 (IR)

Together, they imply cq(qf (θ), θ) · q′f (θ) = 1 and c(qf (θ), θ) = θ. Denote

J(θ|qf ) = −vq(qf (θ), θ)

cq(qf (θ), θ)
−
∫ θ̄

θ
vq(qf (x), x) dF (x)

f(θ)

cqq(qf (θ), θ)/cq(qf (θ), θ) + cqθ(qf (θ), θ)

cq(qf (θ), θ)2

(F.52)

In the specification throughout this section, c(q, θ) = c(q−θ), which means a type-θ agent

can invest a manipulative effort e ≥ 0 at the cost c(e) to achieve quality q = θ + e, where

c′ > 0, c′′ > 0, c′′′ ≥ 0, c(0) = 0. The effort scheme ef (θ) ≡ qf (θ)− θ under full separation
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c′(ef (θ)) · (1 + e′f (θ)) = 1, and J(θ|qf ) simplifies to

J(θ|ef ) = −vq(qf (θ), θ)

c′(ef (θ))
−
∫ θ̄

θ
vq(qf (x), x) dF (x)

f(θ)

c′′(ef (θ))

c′(ef (θ))2
e′f (θ) (F.53)

In the effort-maximizing case (i.e., v(q, θ) = e = q − θ), it further simplifies to

J(θ|ef ) = − 1

c′(ef (θ))
− 1− F (θ)

f(θ)

c′′(ef (θ))

c′(ef (θ))2
e′f (θ) (F.54)

Proposition F.2 (Cf. Proposition 10). The optimal rating induces full separation q∗(θ) =

qf (θ) if and only if J(θ|qf ) is increasing in θ.

Example F.1. Assume quadratic cost c(e) = e2/2 and θ = 0.5; then, ef (θ) = 1 and

ŵ(q) = q − 1. The effort-maximizing rating induces e∗(θ) = 1 and q∗(θ) = θ + 1 (because

J(θ|ef ) = −1 is constant).
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